
www.manaraa.com

ABSTRACT 

HANNA, BOTROS NASEIF HANNA BISHARA. Coarse-Grid Computational Fluid Dynamics 

(CG-CFD) Error Prediction using Machine Learning. (Under the direction of Dr. Nam T. Dinh 

and Dr. Igor A. Bolotnov). 

 

Nuclear reactor safety research requires analysis of a broad range of accident scenarios. 

One of the major safety barriers against nuclear fission products release is the containment 

structure. Modeling and simulation are essential tools to identify parameters affecting Containment 

Thermal Hydraulics (CTH) phenomena. The thermal-hydraulic modeling approaches used in the 

nuclear industry can be classified into two categories: system-level codes and Computational Fluid 

Dynamics (CFD) codes. System codes are not as capable as CFD of capturing and giving detailed 

knowledge of the multi-dimensional behavior of CTH phenomena. However, CFD computational 

cost is high when modeling complex accident scenarios, especially the ones which involve 

longtime transients. The high expense of traditional CFD is due to the need for computational grid 

refinement to guarantee that the solutions are grid independent.  

To mitigate the computational expense, it is proposed to rely on coarse-grid CFD (CG-

CFD). Coarsening the computational grid makes the computation significantly more affordable for 

practical applications, but it also increases the discretization (grid-induced) error which depends 

on the grid size and varies with space and time. Hence, a method is developed to produce a 

surrogate model, that predicts the distribution of the CG-CFD local error, to correct the flow 

variables of interest. Given high-fidelity simulations (sufficiently fine-mesh simulations), a 

surrogate model is trained to predict the CG-CFD local errors as a function of the coarse-grid local 

flow features. The surrogate model is constructed using machine learning regression algorithms 

(namely, artificial neural network and random forest regression). 
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  This proposed method is applied to a three-dimensional turbulent flow inside a lid-driven 

cavity domain. A set of scenarios that test the proposed method are studied. These scenarios 

investigate the capability of the surrogate model to interpolate and extrapolate outside the training 

data range. These scenarios also cover a range of Reynolds number in the turbulent flow and 

transitional flow range plus a range of grid sizes, aspect ratios and different variables of interest. 

Based on the investigated cases: it was found that the random forest regression technique is 

predicting the grid-induced error better than the neural network although random forest technique 

is computationally cheaper. The proposed method maximizes the benefit of the available data and 

shows a potential for a good predictive capability. 

The proposed CG-CFD approach is different from conventional CFD for two reasons: (1) 

Typically, for each new fluid flow problem, a new simulation is needed, and a grid-independent 

solution is required, even if the new flow problem is only slightly different from old one. In the 

proposed CG-CFD method, the available data are utilized to predict the variable of interest for the 

new flow problem (that is simulated by a coarse grid) given the available high-fidelity data. The 

success of this approach is based on the assumption that the available high-fidelity data and the 

new flow problem have similar physics. (2) In conventional turbulence modeling, turbulence 

models typically rely on incorporating more physics and using empirical models for some 

parameters based on the available validation data. For different flow conditions, new turbulence 

models may be constructed. The proposed method is data driven so each new experimental data or 

high-fidelity simulation lead to improving the method capability.  
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1. INTRODUCTION 

Nuclear reactor safety analysis has received more attention since the Fukushima Daiichi 

accident in 2011. Safety and design of Nuclear Power Plants (NPPs) imply studying Thermal 

Hydraulics (TH) phenomena that may evolve during normal operation, design-basis accidents (that 

NPP is designed to withstand) or severe accidents (that involve core melting) [1]. If an accident 

occurs, the role of the reactor containment is vital as the major and final safety barrier. Hence, 

predicting the Containment Thermal Hydraulics (CTH) phenomena impacts is needed to maintain 

the integrity of the containment. Experiments that mimic the potential CTH phenomena are 

necessary, but it is almost impossible to gain experimental full-scale data the cover all CTH 

phenomena.  Hence, for a complex system such as NPP, modeling and simulation are necessary 

for performing safety analysis. There are various codes that are used to achieve this purpose: the 

system TH codes (see Section 1.2) and Computational Fluid Dynamics (CFD) codes (see Section 

1.3).  

The system TH codes can model the entire reactor and its components as they include 

multiple physics (fluid flow, heat transfer, neutron diffusion equations, etc.). However, system 

codes have some limitations as they cannot capture the local three-dimensional complex 

phenomena and they rely on many empirical correlations and parameters that are required due to 

the lack of full understanding of the complex governing physics. Hence, CFD codes are needed to 

capture the multi-dimensional behavior of the phenomena of interest. However, CFD approach is 

computationally expensive for simulating complex systems with large computational domains. 

The high expense of traditional CFD is due to the need for computational grid refinement to 

guarantee that the solutions are grid-independent. To reduce the CFD computational cost, there is 

a need for coarse-grid CFD.  
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It is proposed that the numerical error, which arises because of the coarse grids, can be 

reduced/recovered using data-driven models. The need of data-driven CFD models, which benefit 

from the available experimental and high-fidelity simulations, is emphasized in Section 1.4.  

Currently, there is an increasing attention to the necessity of data-driven fluid dynamics’ models 

that can be less expensive and more adaptable to the data (see Section 1.5).  

This work proposes a framework to use a data-driven CG-CFD method in CTH field 

(described in Section 1.6). To clarify the difference between the proposed data-driven CG-CFD 

method and other approaches that aim to mitigate the complexity of CFD, the scope of this work 

is presented in Section 1.7. Finally, the structure of the rest of the dissertation is described in 

Section 1.8. 

1.1. Objectives 

The objectives of this chapter can be summarized as follows: 

• Evaluating the capabilities and limitation of potential codes in CTH fields (system codes and 

CFD). 

• Introducing the motivation behind this research. 

• Discussing the current research in data-driven CFD modeling. 

• Developing a general framework to use CG-CFD simulations in CTH field. 

1.2. An Overview of System Codes for Nuclear Thermal Hydraulics 

System codes are designed to simulate the phenomena that are involved in design basis and 

severe accidents. These codes utilize control volume approach to perform affordable computations. 

Large control volumes are used to perform economic simulations. For instance, control volumes, 

that are bigger than a one-meter cube, are used in phenomena-dominating regions (reactor vessel 

is recently modeled by few hundreds to few thousand volumes). The control volumes are much 
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bigger in other less-important regions in the nuclear system [2, 3]. Within each volume, time and 

space dependent conservation equations for mass, momentum, and energy are solved for a 

homogenous two-phase (steam-water) mixture. Phenomena are modeled with different degrees of 

dimensionality [2]. Zero-dimensional (lumped parameter) models are used where the velocities 

are low (e.g. reactor lower plenum). One-dimensional models are used where the flow has a 

uniform direction (e.g. pipe flow). Three-dimensional models were developed for the components 

with three-dimensional velocity (e.g. pressure vessel) with a coarse grid. Examples of system 

codes include RELAP5 [3], MELCOR [4] and GOTHIC [5].   

System codes are recognized in the nuclear industry as useful tools for analyzing accidents 

and transients on the reactor system level. They represent the currently available knowledge and 

can predict the figure of merit with computationally affordable simulations. However, system 

codes still have some limitations. Among these limitations is the coarse-space resolution so the 

small-scale phenomena are not resolved; Simulating highly turbulent flows requires fine-grid 

resolution to resolve a broad range of turbulence spatial scales (See Chapter 2). Additionally, mesh 

convergence to get a mesh independent solution is not expected with such a coarse resolution. A 

lot of closure laws, empirical equations and parameters also introduce uncertainty.  

The complex geometries in the nuclear reactor system are replaced by simple models which 

introduce uncertainty as well. Therefore, system codes cannot properly model the complex multi-

dimensional behavior of CTH phenomena (e.g. mixing and natural circulation) and therefore, 

cannot provide information to understand certain phenomena [6, 7]. Analyzing local phenomena 

in specific sceneries requires CFD simulations (Section 1.3). 
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1.3. An Overview of CFD Codes for Nuclear Thermal Hydraulics 

The second type is Computational Fluid Dynamics (CFD) codes, such as Fluent [8], STAR-

CCM+ [9] and OpenFOAM [10]. CFD simulations are based on solving Navier-Stokes (NS) 

equations. CFD approach is different from system codes (in Section 1.2) due to different reasons 

[11]: 1. CFD approach can fully predict phenomena which are multi-dimensional, local, transient, 

and geometry dependent (this is not possible with system codes). 2. CFD can provide insights to 

understand the physics (not expected with system codes). 3. It is typical, in system codes, to solve 

simplified balance equations for control volumes bounded by the solid walls while CFD approach 

is based on NS equations solved for each cell in the computational grid. 4. In CFD, mesh 

convergence study is performed by reducing the mesh size to a fixed value (not possible with the 

computational domain coarse nodalization in system codes). 

The majority of flows in nuclear thermal hydraulics are turbulent. Simulation of turbulent 

flows with CFD requires capturing a broad range of turbulence length and time scales. Because of 

the complex geometry and high Reynolds number (highly turbulent) flow, it is computationally 

very expensive to simulate CTH flows by solving NS equations directly. Instead, the most common 

method is solving the Reynolds Averaged Navier-Stokes (RANS) equations. RANS modeling [12] 

implies solving the time-averaged NS equations while the turbulence stresses (resulting from the 

averaging procedures) are modeled with closure models. However, RANS approach also has its 

limitations. For example, in a recent study [13], OpenFOAM (CFD package) [10] was used to 

simulate high-pressure blowdown from the reactor cooling system and containment convective 

mixing. The simulation needed a week of computing time with 128 processors to simulate 10 

seconds of steam blowdown. It is important to mention that a coarse-grid (cell length ranges from 

3 to 14 centimeters) was used (resulted in one million computational nodes) with RANS equations. 
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Considering the coarseness of the grid plus the low resolution of the RANS approach results 

compared to solving NS equations directly (Direct Numerical Simulation (DNS)), it is clear that 

applying CFD would be a huge computational challenge. The challenge becomes even more 

formidable when modeling more complex accidents with long transient scenarios. The fine grid 

requirements often drive down the computational time step size, which makes the solution of long-

transient problems prohibitively expensive. The need for sensitivity analysis, uncertainty 

quantification, and analysis of multiple scenarios required by Risk-Informed Safety Margin 

Characterization (RISMC) also exacerbates the issue of high computational expense [14]. CFD 

simulation of a full reactor core, with its fuel rods, spacer grids, and other components, is not yet 

practical [15]. 

To mitigate the computational expense, it is proposed to rely on CG-CFD models. CG-

CFD simulations increase the discretization error which depends on the grid size and varies with 

space and time. This grid-induced error can be predicted to correct the variable of interest using 

data-driven models. The need for data-driven models and the progress in data-driven modeling in 

fluid dynamics field are discussed in Sections 1.4 and 1.5 respectively. 

1.4. Motivation: The Need for Data-Driven Models 

In CFD, high-fidelity results can be obtained by simulating all the turbulence length and 

time scales using DNS [12], which is accurate but computationally challenging for many 

applications (turbulent flows with high Reynolds number). A computationally cheaper alternative 

approach is Large Eddy Simulation (LES) [16] that requires a computational grid that is coarser 

than the grid needed in DNS. In LES, the large-scale motions (energy-containing eddies) are 

captured, while the small-scale flow motions are either modeled using an explicit sub-grid scale 
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model or implicitly modeled using the numerical dissipation associated with the computational 

scheme knows as Implicit LES (ILES) (see [17, 18]). 

Despite the progress in LES methods, the Reynolds Averaged Navier-Stokes (RANS) 

equations [12] approach is still more popular and computationally efficient in industrial 

applications. RANS approach requires a coarse grid (compared to LES and DNS) as it resolves the 

mean flow variables only, not the detailed instantaneous flow. However, RANS models (such as 

𝑘 − 휀 [19] and Spalart-Allmaras [20] model) lack adaptability, i.e. RANS models perform well 

only for specific flow conditions and geometries. This gives an advantage to data-driven surrogate 

statistical models as they could adapt via data assimilation as more data becomes available. The 

availability of high-fidelity simulations provides an opportunity to inform data-driven coarse-grid 

models. Currently, as discussed below, several groups of researchers are pursuing the development 

of data-driven methods to perform coarse grid simulations (see Section 1.5).  

1.5. Progress in Data-Driven Models in Fluid Dynamics  

Traditionally, fluid flow models (for turbulence or multiphase flow, etc.) were developed 

based on physical understanding of the phenomena often with certain empirical assumptions. 

Recently, data-driven models have been developed based on data processing and analysis (data-

driven), to make more use of the available data. An overview of recent data-driven models is 

presented below. These data-driven models are either utilized in the context of CFD (to correct 

LES or RANS simulations or compute closure terms for averaged variables’ equations) or in the 

context of Smoothed Particle Hydrodynamics (SPH) [21]. 

1.5.1. Autonomic sub-grid Large Eddy Simulation (ALES) 

Autonomic Sub-grid Large Eddy Simulation (ALES) [22] can be regarded as a data-driven 

method that utilizes a grid that is deemed to be coarse compared to DNS grid requirements but 
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must be relatively fine to resolve turbulence kinetic energy (TKE) in the inertial range of the 

turbulence energy spectrum. The ALES method expresses the local sub-grid scale stress tensor as 

a non-linear function of the resolved variables at all locations and all times with a Volterra series 

(which is similar to a Taylor series). The series coefficients are computed by minimizing the error 

in sub-grid scale stresses at a test filter scale. Then, coefficients are mapped to the LES scale 

assuming scale similarity (noting that both LES scale and test scale lie in the self-similar inertial 

range of the turbulence energy spectrum). The ALES method is a general model-free self-

optimizing approach for closure of turbulence simulations. The ALES method needs neither 

previous training based on DNS results nor user-specified parameters. Preliminary results with 

simple problems (homogenous turbulence and sheared turbulence) showed high accuracy in 

computing turbulent stresses compared to current turbulence models [23]. However, the scale 

similarity assumption, upon which ALES is based, is valid only in the inertial range (in the TKE 

spectrum). Therefore, applying ALES approach is still impractical in simulating large domains / 

long transients. 

1.5.2. Autonomic sub- Closure Term in a Bubbly Flow Equation 

Another example [24] from the multiphase flow field is finding the closure term in an 

averaged simple equation for bubbly flow using an Artificial Neural Network (ANN) [25], given 

accurate results obtained by DNS. In that problem, the initial vertical velocity and the average 

bubble density are uniform except in one of the horizontal directions. As the transient develops, 

the bubble density and velocity become uniform. It was assumed that the unknown closure term 

depends on the void fraction, the void fraction gradient, and the liquid velocity gradient. ANN 

learns the correlation between the closure term and these three variables from one simulation 

dataset. A transient of different initial conditions can then be predicted using that correlation. That 
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case study was quite simple (the averaged equation is one dimensional, and the boundary 

conditions are periodic). 

1.5.3. RANS Model Discrepancy 

To reduce the RANS model discrepancy by learning from data, research groups from the 

University of Michigan and Virginia Tech University utilized ML techniques to predict or reduce 

the error in RANS simulation results [26, 27]. A comparison that summarizes these efforts is 

presented in Table 1. Both groups made use of High-Fidelity (HF) simulation results from DNS to 

correct the Low-Fidelity (LF) model results from RANS. In [26], RANS results are corrected by 

spatially distributed multiplicative discrepancy term, 𝛽, into one of the terms of the transport 

equation of turbulent quantities; in [27], the Reynolds stress discrepancy is directly based on mean 

flow features computed by RANS.  

The statistical model in both cases is trained based on the available high-fidelity data and 

then tested on other cases, which have a different Reynolds number or a different flow geometry. 

Recently, the Virginia Tech University research group suggested that [28] the group of input 

features could be increased to more than 50 flow features to improve the prediction capability of 

the statistical model. It was also shown that not only could Reynolds stress discrepancy, computed 

by RANS, be improved by predicting Reynolds stress discrepancy, but also the improved Reynolds 

stress results in a more accurate velocity field. Similarly, Barone et al. [29] used deep neural 

network [30] to correlate LES error with the flow variables resolved by LES. 
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Table 1. A Comparison between two approaches for data-driven turbulence modeling. 

Authors Parish & Duraisamy (Journal of 

Computational Physics 2016) 

University of Michigan. 

Wang, Wu, & Xiao (Physical 

Review Fluids 2017) 

Virginia Tech Univ. 

Method RANS results are corrected by 

introducing a spatially distributed 

multiplicative discrepancy term 𝛽 into 

one of the terms of the transport 

equation of the turbulent quantities. 

Reynolds stress discrepancy (the 

difference between Reynolds stress 

computed by DNS and by RANS 

methods) is a function of the mean 

flow features computed by RANS. 

Reynolds stress discrepancy 

components and the mean flow 

features computed by RANS are 

introduced in Galilean invariant 

forms. 

HF and 

LF data 

HF: DNS results. LF: RANS results. 

Input and 

output 

Input: turbulent flow features e.g. 

𝑌+,
𝑃

𝜀,
,  etc. 

Output: 𝛽. 

Input: turbulent flow features e.g. 

𝑄,
𝑘

𝜀,
, etc. 

Output: 𝜏𝐷𝑁𝑆 − 𝜏𝑅𝐴𝑁𝑆. 

Case 

study 

Two-dimensional domain with one 

dimensional fully developed channel 

flow. 

1- The fully developed turbulent 

flow in a square duct. 

2- Three dimensional fully 

developed turbulent flow in 

periodic hill geometry. 

Training Channel flow Study#1: The fully developed 

turbulent flow in a square duct. 

Study#2: Three-dimensional fully 

developed turbulent flow in a 

periodic hill geometry. 

Study#3: Wavy channel & curved 

backward-facing step. 
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Table 2 (continued). A Comparison between two approaches for data-driven turbulence 

modeling. 

Statistical data-driven models are usually trained on a set of data and then tested with 

another group of data that are “close” to the training data in some sense. The “closeness” between 

the training data and the testing data can be used to assess the prediction confidence a priori [33]. 

This closeness could be quantified by metrics like the Mahalanobis Distance [34] or the Kernel 

Density Estimation technique [35]. This approach was successful in most cases except when the 

training and testing cases are too close or too far apart [33]. 

ML model predictions, for RANS Reynolds stress anisotropy, for flows of similar physics, 

should be similar. ML model predictions should not change with changing the orientation of 

coordinate frame. In other words, ML predictions should be Galilean invariant. Based on this 

principle, a multi-layer (deep) ANN (also called “deep learning”), with invariant tensor basis, was 

proposed [36]. This way, Reynolds stress anisotropy tensor can be predicted with an embedded 

Testing Channel flow with a different Reynolds 

number. 

Study#1: The fully developed 

turbulent flow in a square duct with a 

different Reynolds number. 

Study#2&3: Three dimensional fully 

developed turbulent flow in a 

periodic hill geometry with a 

different Reynolds number. 

Statistical 

learning 

Gaussian process regression [31]. Random forest regression [32]. 

Notes It assumes that both the data 

distribution and the corrector 𝛽 are 

Gaussian. 

Dependence on grid size and numerical 

scheme were not considered. 

Dependence on grid size and 

numerical scheme were not 

considered. 
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Galilean invariance. The proposed tensor-basis ANN proved to have more accurate prediction 

compared to both RANS models and conventional ANN.  

1.5.4. Smoothed Particle Hydrodynamics 

Data-driven models, for fluid simulations, are used not only in mesh-based CFD but also 

in Smoothed Particle Hydrodynamics (SPH) (where Navier-Stokes equations are approximated on 

fluid particles instead of a computational grid [21]). Random Forest Regression (RFR) [32] was 

trained to predict the velocity and position of the fluid particle in the next time step based on the 

velocity and the position in the previous time step [37]. This approach aims to “learn” the behavior 

of fluid from the training examples and provides an alternative for real-time fluid simulations. 

1.6. CG-CFD for Simulating CTH 

Typical accident scenarios may include long transients, CTH multi-physics phenomena, 

and the flow regime may change over the computational domain or over time. CG-CFD approach 

can be used to deal with such a complex situation, as presented in Figure 1. In Figure 1, a 

conceptual framework is proposed to benefit from the fine-grid simulation results, to correct the 

CG-CFD results for every single phenomenon, while the multiple-phenomena scenario is 

simulated with coarse grids.  

In Figure 1, the boxes are numbered from 1 to 8 to refer to 8 steps. In the 1st step, the flow 

of every single phenomenon of interest is simulated with a grid which is coarse relative to the grid 

requirement of DNS. This coarse-grid simulation is not expected to obtain accurate results, but it 

is still expected to show a flow pattern similar to the high-fidelity simulation result. For instance, 

in Figure 2, the difference between the coarse-grid and the fine-grid results is clear, both results 

show similar flow pattern.  Repeating this step with a variety of potential phenomena will result in 

a library of CG-CFD results (2nd step). The 3rd, 4th and 7th steps are the focus of this work  
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Figure 1. A conceptual framework for simulating CTH with CG-CFD. The focus of this work is 

highlighted in yellow. 

. Since the number of nodes in a fine gird is much larger than in a coarse grid, it is hard to 

compare the fine and coarse grid results directly. Instead, coarse-grid results (1st step) are compared 

to the fine-grid results (3rd step) mapped on the coarse grid (4th step). Figure 2 gives an example 

of the difference between the coarse-grid, fine-grid and mapped results. While the mapped velocity 
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profile is not perfectly similar to the fine-grid results (especially near the corners of the cavity), 

the mapped profile is much more accurate than the coarse-grid one. In this work, machine learning 

algorithms are utilized to get a statistical data-driven model that models a correction term (7th step) 

that compensates for the information lost due to the coarseness of the grid.  

 

Figure 2. A snapshot of the velocity (𝑈𝑦) profile in a three-dimensional quasi-steady state turbulent 

flow in a lid-driven cavity. The lid is moving in 𝑥-direction. The profile is computed with a fine 

grid (left) and a coarse-grid (right). The fine-grid result is mapped to a coarse-grid (in the middle). 

Based upon the success of the first 4 steps, simulating a realistic nuclear accident scenario 

that involves multi-phenomena with a coarse grid can be beneficial (5th step). Given the non-

accurate predictions coming out of the 5th step plus the library created in the 2nd step, different 

phenomena involved in a containment scenario can be identified (6th step: pattern recognition). 

Pattern recognition is a process of classifying the features into groups. It may help to distinguish 

different flow regimes (e.g. laminar vs. turbulent or shear flow vs. wall-bounded flow). 
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If each phenomenon is identified correctly, it may be possible to benefit from the correction 

term computed in the 7th step to correct different group of results corresponding to different 

phenomena. It would be challenging to use correction terms computed by different data-driven 

models for different groups of interacting phenomena. Therefore, blending functions may be 

needed to deal with a mixture of models (8th step). 

1.7. The Scope of This Work 

Since the traditional high-resolution (mesh-independent) CFD solution is computationally 

expensive and using of a coarse grid would result in high grid-induced errors, the present work 

focuses on predicting the errors of the coarse-grid solution. While the previous research aimed 

largely to reduce the model form error, in this work, the sub-grid effect is compensated for by a 

surrogate statistical model that is trained by using high-fidelity simulation results (fine-grid CFD). 

The objective of this work is to investigate the feasibility of obtaining a correction for the 

CG-CFD simulation results using machine learning algorithms. Numerical experiments are 

designed and performed to study the feasibility of utilizing machine learning tools to get a 

correlation between the ‘correct’ solution informed by fine grid simulation results and the coarse-

grid variables. Among the different sources of error in CFD simulation (see Figure 3), the 

turbulence modeling error and the discretization error are the most challenging ones. Below, in 

Subsections 1.7.1, 1.7.2 and 1.7.3, the present work is compared to other CFD approaches in terms 

of mitigating turbulence modeling error and discretization error. 
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Figure 3. CFD sources of error. 

1.7.1. Present Approach vs. Traditional CFD 

RANS turbulence models are popular because of the reduced computational expense while 

representing three-dimensional flow behavior. RANS turbulence models typically rely on 

incorporating more physics and using empirical models for some parameters based on the available 

validation data. It is always required to get a grid-independent solution (with a grid convergence 
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study), but this grid convergence study should be applied within the range of grids that satisfy the 

turbulence model grid requirements. Typically, for each new case, a new simulation is needed, 

even if the new case is only slightly different from old cases. 

In the present work, the “No model” approach (where NS equations are solved numerically 

without any turbulence model) is utilized with coarse grids (discretization grids that are expected 

to produce non-accurate results). However, instead of investigating the turbulence modeling error, 

we use the same “No model” approach with different grids (fine and coarse grids) to train a 

surrogate model to compute this grid-induced error. The CG-CFD error is predicted by comparing 

the high-fidelity results (with fine grids) against CG-CFD results. With this surrogate model, the 

grid-induced error can be predicted for other cases that have different grid sizes, Reynolds 

numbers, etc. The surrogate model is adaptive with the available data, so each new set of 

experimental data or high-fidelity computations will be reflected in the automatically-improved 

model, without the need for developing other models that capture the new data. 

1.7.2. Present Research vs. Turbulence Modeling Error Reduction 

Recently, research has been pursued in the direction of taking advantage of the ML 

algorithms to develop surrogate models that can compute the turbulence modeling error (for 

instance, [26, 27]). This approach is known as Physics Informed Machine Learning (PIML) 

approach. Both the present work and PIML method benefit from ML algorithms to produce data-

driven statistical models. PIML recent research assumes that one of the RANS models is used and 

the grid convergence criterion for this model is satisfied. Through PIML, the difference between 

RANS flow variables profile and DNS profile is computed. On the other side, the present work 

depends on the same NS equations used with both fine and coarse grids. After that, the error 

resulting from the grid coarseness is computed with the ML surrogate model.  
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1.7.3. This Work vs. Reduced Order Modeling (ROM) 

ROM techniques can be categorized in two classes: dimensionality reduction and surrogate 

modeling [38]. The first class is the dimensionality reduction techniques which aim to reduce the 

number of inputs or (dimensions) of the model without changing the original function. CG-CFD 

approach discussed in this work does not involve any dimensionality reduction because the same 

flow variables are included in both fine and coarse-grid simulations. 

The second class is the surrogate modeling which leads to substituting the original model 

with another approximate more simplified function. This simplification is either based on physics 

or based on statistics (data). For instance, LES and RANS method can be regarded as physics-

based approaches because both methods were developed based on some physical assumptions and 

are considered as approximations of the original NS equation. On the other side, the statistics-

based surrogate functions are selected heuristically by regression methods or ML algorithms. To 

classify the current work, the proposed CG-CFD approach is described symbolically as follows: 

The discretized NS equations solved on a sufficiently fine grid is written as: 𝐿𝑓(𝜑) = 0. 

𝜑𝑓 is the flow variables computed by the fine grid and 𝐿𝑓 is the discrete operator computed by a 

fine grid. The discretized CG-CFD equations can be written as 𝐿𝛥(𝜑𝛥) = 0. 𝛥 is the cell length of 

the coarse grid. The grid-induced error, when computing a variable 𝜑, is 휀𝛥(𝜑) = 𝜑𝑓→𝛥 − 𝜑𝛥, 

while 𝜑𝑓→𝛥 is the 𝜑𝑓 field mapped on a coarse grid. Using ML, a surrogate function 𝐹 is computed: 

휀𝛥(𝜑) = 𝐹(𝑋(𝜑𝛥)) (1-1) 

where X(𝜑𝛥) is the features set (new variables) computed given 𝜑𝛥. The process of obtaining 

휀𝛥(𝜑), as a function of 𝑋(𝜑𝛥), can be classified as a statistics-based surrogate model construction 

because it is mainly dependent on the available data. 
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1.8. The Structure of This Dissertation 

Sources of uncertainty in CFD are mainly turbulence modeling error and numerical error 

(see Chapters 2 and 3, respectively). The numerical error (in particular, the grid-induced error) is 

recovered using data-driven techniques based on ML. Different ML algorithms are listed in 

Chapter 4. These ML algorithms are utilized to produce a statistical model that can predict the 

CFD coarse-grid-induced error, given the flow features computed by a coarse grid (see Chapter 

5). The capability of the statistical model to predict the grid-induced error in different cases is 

illustrated and assessed in Chapter 6. The conclusion of this dissertation and the future work plan 

are provided in Chapter 7. The following section (Section 1.9) is presented to clarify the meaning 

of some terms used in the context of this work.  

1.9.  Definitions 

• Training data: A set of data needed to discover the relationship between different variables. 

For instance, this group of data is used to find the regression function which relates the output 

and input. 

• Testing data: After training the statistical model given the “training data”, this model is 

assessed using the testing data. Testing data are totally independent of the training data. 

• Features: (or attributes or inputs) are the input variables which characterize the problem. For 

instance, fluid flow features can be the velocity or the pressure and so on. 

• Discretization error: the difference between the exact solution of the discretized equation and 

the exact solution of the original Partial Differential Equations (PDEs). It includes both 

truncation error (locally generated) and the pollution error (transported component). 

• Truncation error: when approximating a function by a summation (for instance, Taylor series), 

the infinite sum is truncated and approximated by a finite sum. This is called truncation error 
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and it occurs when truncating the infinite series used to approximate a PDE (when discretizing 

PDEs). This error is eliminated by refining the grid.  Truncation error is the local source of the 

discretization error. 

• Pollution error: It is another component of the discretization error. It is not produced locally 

but transports from elsewhere in the computational domain. This error is transported through 

the domain similar to the solution transport (the error can be convected or diffused). 

• Round-off error: Difference between the actual number and its approximation (rounding) 

stored on the computer. This error is assumed to be small compared to other errors. 

• Iterative convergence error: it is an error that results from the iterative algorithm that is used 

during the simulation. Typically, this iteration is stopped based on a criterion (typically the 

residual). It is the difference between the solution of the discretized equation with the stopping 

criterion and the exact solution of the discretized equation with a zero residual. 

1.10. Chapter Summary 

Modeling and simulation of Containment Thermal Hydraulics (CTH) phenomena are 

achieved either by system codes or Computational Fluid Dynamics (CFD). Affordable 

computations on the reactor-system level are performed by system codes using large control 

volumes (larger than one cubic meter). Using System codes, CTH phenomena are modeled 

with different degrees of dimensionality. Although system codes represent the currently 

available knowledge in the nuclear industry, they cannot properly model the complex multi-

dimensional behavior of CTH phenomena because of the uncertainty related to the used 

empirical equations, empirical parameters, simplified geometries and coarse-mesh resolution.  

On the other side, CFD codes can model phenomena which are multi-dimensional, local, 

transient, and geometry dependent plus providing insights to understand the physics. However, 
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applying CFD would be a huge computational challenge when modeling complex accidents 

with long transient scenarios. 

This work is motivated by the need to mitigate CFD computational expense and the 

current progress in data-driven modeling using machine learning algorithms that can benefit 

from the available high-fidelity simulations and experimental data. Hence, it is proposed to 

rely on the coarse-grid CFD simulations (which are affordable) while the grid-induced error 

can be predicted using data-driven models.  

Currently, data-driven models (trained by Direct Numerical Simulations (DNS) data) 

are utilized in the context of CFD to correct Large Eddy Simulations (LES), Reynolds 

Averaged Navier-Stokes (RANS) simulations or to compute closure terms for averaged 

variables’ equations. On the other side, the present work investigates the feasibility of 

correcting coarse-grid solutions computed by Navier-Stokes equations, without turbulence 

modeling, using data-driven models that are trained with sufficiently fine-grid simulations.  

A method that predicts the grid-induced error given the coarse-grid solution features is 

proposed. Currently, this method is applied to a turbulent three-dimensional flow inside a 

cavity. A General framework that benefits from the proposed method to simulate CTH 

phenomena using coarse-grid CFD is also proposed in this work. 
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2. TURBULENCE MODELING 

CFD approach is used in CTH analyses to capture the relevant multi-dimensional 

phenomena in detail. CFD implies solving Navier-Stokes equations numerically and this requires 

finer grid resolution especially if the flow is highly turbulent. CTH phenomena typically include 

turbulent flows, therefore, solving NS equation directly will be computationally expensive due to 

fine-resolution requirements. After clarifying the objectives of this chapter (Section 2.1), basic 

turbulence theory is introduced briefly (Section 2.2). The methods which are typically used to 

model turbulence are presented (namely, LES (Section 2.3) and RANS (Section 2.4)). This chapter 

gives the reader an overview of the traditional mechanistic turbulence model used to mitigate the 

need for high-resolution grids. The confidence in either LES or RANS simulations is related to 

reducing CFD sources of error (See Figure 3). Among these sources of error, grid induced-error is 

the focus of this work as we propose to rely on coarse-grid simulations. Hence, the grid-induced 

error, in the simulations performed by LES, RANS and the proposed CG-CFD method, is 

discussed in Section 2.5 and the whole chapter is summarized in Section 2.6. 

2.1. Objectives 

The objectives of this chapter can be summarized as follows: 

• Discussing the traditional mechanistic turbulence models. 

• Providing an overview of the grid-induced error treatment in the proposed CG-CFD 

method vs. the corresponding error when applying traditional turbulence modeling. 

2.2. Basics of the Turbulence Theory 

Turbulence is unsteady and chaotic fluid motion in which the three velocity components 

fluctuate mixing matter, momentum, and energy. Turbulent flows always occur at higher Reynolds 

numbers when inertia forces overcome viscous forces. Turbulence can be imagined as a set of 
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eddies of different sizes. There are large scales where the energy enters the flow through mean 

shear; there is an inertial range (intermediate scales) where energy flows to the smaller scales of 

the dissipation range where the energy dissipates into heat due to molecular viscosity effects [12]. 

A typical example of the distribution of turbulence energy contained in the eddies of size 𝑙 

(corresponding to wavenumber 𝜅𝑙 =
2𝜋

𝑙
) is illustrated in Figure 4.  

 

Figure 4. Distribution of turbulent energy in wavenumber space. 

In order to represent the eddies belonging to various energy ranges, NS equations can be 

solved directly on a sufficiently fine grid using a small-time step to capture length scales down to 

Kolmogorov length scale (𝜂) and time scales down to 𝜏η: 

𝜂 = (𝜈3 e⁄ )1 4⁄     (2-1) 

𝜏𝜂 = (𝜈 e⁄ )1 2⁄  (2-2)         
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This method (Direct Numerical Simulation, DNS) is the most accurate method of solving 

turbulent flows. It results in accurate three-dimensional instantaneous velocity and pressure 

numerical data. It is accurate for simple flows, but it is computationally challenging for real-world 

applications (turbulent flows with higher Reynolds number, Re). The number of grid points needed 

for DNS simulation is proportional to Re9/4 [12] (see Figure 5). For most applications, it is 

unnecessary to resolve all the turbulence scales. It suffices to predict the effect of turbulence on 

mean flow behavior. Therefore, turbulence models are developed to close the system of the mean 

flow equations. Different turbulence modeling methods are described in Sections 2.3 and 2.4. It is 

worth noting that the averaged flow pattern is a statistical flow property (cannot be directly 

observed in nature for turbulent flows).  

2.3. Large Eddy Simulation (LES) 

LES method was proposed by Smagorinsky [16]. In this method, turbulent flow large 

eddies are resolved directly while the sub-grid scale eddies (the ones which cannot be resolved 

using the coarser grid) are modeled. This results in the reduced computational cost of LES 

compared to DNS. LES requires the smallest resolved spatial and temporal scales to lie in the 

inertial subrange of turbulence (see Figure 4). Large eddies contain most of the turbulent kinetic 

energy and are responsible for turbulent mixing and momentum transfer while the small eddies are 

isotropic (universal and less dependent on boundary conditions) which allows developing a nearly 

universal sub-grid model for them. The computational cost of LES (for free shear flow simulations) 

varies weakly with Reynolds number and is proportional to 𝑅𝑒0.4  [39]. For wall-bounded flows, 

LES computational cost (number of grid points) scales with 𝑅𝑒1.76 [39] (this computational cost 

is comparable to DNS as illustrated in Figure 5) . Thus, LES method allows to perform simulations 

with Reynolds number higher than those simulated by DNS using the same computational power. 
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In LES, any variable in NS equation, 𝜑 is spatially filtered to resolve the large turbulent 

eddies whose scales range from domain size to filter width while the eddies of scales between filter 

size and grid width are modeled. The filters are localized functions that include Gaussian filtering, 

box filtering (simple average over volume) and cutoff filtering (Fourier coefficients belonging to 

wavenumbers above the cutoff are eliminated). For example, using a box filter, the filtered variable 

�̅�  is given by: 

�̅�(𝑥) =
1

𝑉
∫

𝑣
𝜑(𝑥′)𝑑𝑥′, 𝑥′ ∈ 𝑣            (2-3) 

where 𝑉 is the volume of a computational cell. The filtered NS equation (for incompressible flow) 

is: 

𝜕𝑢�̅�

𝜕𝑡
+

𝜕𝑢�̅�𝑢�̅�

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(
𝜕𝜎𝑖𝑗̅̅̅̅

𝜕𝑥𝑗
) −

𝜕𝑝𝑘̅̅ ̅

𝜕𝑥𝑖
−

𝜕𝜏𝑖𝑗̅̅ ̅

𝜕𝑥𝑗
 (2-4) 

𝜎𝑖𝑗̅̅̅̅ = 𝜈 (
𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕𝑢�̅�

𝜕𝑥𝑖
) −

2

3
𝜈
𝜕𝑢�̅�

𝜕𝑥𝑙
𝛿𝑖𝑗 (2-5) 

𝜏𝑖𝑗̅̅ ̅ = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢�̅�𝑢�̅�   (2-6) 

where 𝑝𝑘 and 𝜈 are the kinematic pressure and kinematic viscosity. 𝜏𝑖𝑗̅̅ ̅ is the Sub-Grid Scale (SGS) 

stress tensor. One of the earliest models to solve 𝜏𝑖𝑗̅̅ ̅ is the Smagorinsky turbulence model [16]. 

Similar to the dissipation due to dynamic fluid viscosity in a laminar flow, the concept of SGS 

viscosity, 𝜈𝑠𝑔𝑠, is introduced to represent the dissipation effect of small scales as following: 

𝜏𝑖𝑗̅̅ ̅ −
1

3
𝜏𝑘𝑘̅̅ ̅̅ 𝛿𝑖𝑗 = −2𝜈𝑠𝑔𝑠𝑆𝑖𝑗

̅̅̅̅  (2-7) 
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𝑆𝑖𝑗
̅̅̅̅ = 0.5 (

𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕𝑢�̅�

𝜕𝑥𝑖
) (2-8) 

𝜈𝑠𝑔𝑠 = 𝐿𝑠
2𝐶𝑠

2|𝑆| (2-9) 

𝑆 = √2𝑆𝑖𝑗
̅̅̅̅ 𝑆𝑖𝑗

̅̅̅̅  (2-10) 

𝐿𝑠 = 𝑚𝑖𝑛 [
𝜅𝑦

𝐶∆
(1 − 𝑒

−
𝑦+

𝐴+) , 𝑉1/3] (2-11) 

where 𝑆𝑖𝑗
̅̅̅̅  is the strain rate of the resolved velocity field, 𝐿𝑠 is the mixing length for sub-grid scales 

and 𝐶𝑠 is a model constant (proposed to be 0.18) [40]. The SGS viscosity value is large near the 

wall because of the high velocity gradient at the wall. Near wall turbulent fluctuations go to zero 

so 𝜈𝑠𝑔𝑠 must go to zero as well. Therefore, Van Driest damping [41] is added (Eq. (2-11)). In this 

equation, 𝜅 is the von Karman constant, 𝑦 is the closest distance to the wall, 𝐶∆ and 𝐴+ are model 

constants, 𝑉 is the computational cell volume. This model has some limitations because 𝐶𝑠 value 

needs to be changed for different flow patterns. It may take values from 0.065 to 0.25 [42]. 

To eliminate the need for tuning Smagorinsky constant, a dynamic model is developed by 

Germano and Lilly to [40] compute the Smagorinsky constant dynamically. In this model, the flow 

variables are filtered by 2 filters (grid filter and test filter) while the test filter is larger than the grid 

filter width. Filtering with a grid filter results in SGS tensor, 𝜏𝑖𝑗̅̅ ̅ (see Equation (2-6)). Computing 

the SGS tensor based upon test filter gives 𝜏𝑖𝑗
𝑡. Applying both filters (grid filter and test filter) 

yields another SGS tensor, 𝑇𝑖𝑗: 

𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̿̿ ̿̿ ̿ − 𝑢�̿�𝑢�̿� (2-12) 
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𝐿𝑖𝑗 = 𝑇𝑖𝑗 − 𝜏𝑖𝑗
𝑡 (2-13) 

𝑀𝑖𝑗 = −2∆2 (𝛼2𝑆𝑖𝑗
̿̿̿̿  |𝑆|̿̿̿̿ − 𝑆𝑖𝑗

̅̅̅̅ |𝑆|̅̅̅̅̅̅ ̅̅ ̅̅ ̅) (2-14) 

𝐶𝑠
2 =

〈𝐿𝑖𝑗 𝑀𝑖𝑗〉

〈𝑀𝑖𝑗𝑀𝑖𝑗〉
 (2-15) 

where ∆ the test is scale and 𝛼∆ is the resulted scale from applying the two filters. This model 

assumes that Smagorinsky constant value at ∆ and 𝛼∆ is the same (scale invariance). In this way, 

𝐶𝑠 can be computed for each grid cell and each time step. However, this may cause 𝜈𝑠𝑔𝑠 value to 

be negative in some locations [43]. In general, LES is capable of simulating separated flow but it 

is not affordable when simulating near-wall flow at high Reynolds numbers. The filtered variables 

are not averaged over time, so the flow variables are functions of time. Therefore, LES can 

compute transient flows. LES is still much more expensive than RANS which is the most used 

approach in industrial CFD (see Section 2.4). As depicted in Figure 5, the number of grid points 

needed to simulate wall-bounded flows, using RANS approach, is proportional to 𝑙𝑛(𝑅𝑒) [12]. 
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Figure 5. Computational expense (of DNS, LES, and RANS) as a function of Reynolds number. 

2.4. Reynolds Averaged Navier-Stokes (RANS) Equations 

RANS is the workhorse tool in turbulence modeling in industry. Reynolds decomposition 

of the velocity into a mean velocity component and a turbulent fluctuating component is written 

as: 

𝑢 = 𝑢 + 𝑢′ (2-16) 

The same way of decomposition is applied to pressure. Applying Reynolds decomposition on NS 

Equation (2-17) results in RANS Equation (2-18). 
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𝜕𝑢𝑖

𝜕𝑡
= −𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
−

1

𝜌

𝜕𝑝𝑘

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
 (2-17) 

𝜕𝑢𝑖

𝜕𝑡
= −𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
−

1

𝜌

𝜕𝑝𝑘̅̅ ̅

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
 (2-18) 

NS Equation (2-17) is expressed in tensor notation (for incompressible Newtonian fluid). The right 

side of the equation is the momentum time rate of change while the right-hand side is the 

summation of the inertial force term (momentum transport because of the bulk fluid motion), the 

pressure force and the viscous force. In RANS Equation (2-18), the last term of the right-hand side 

is called Reynolds stresses [12]. This term is modeled according to Boussinesq approximation that 

Reynolds stresses are proportional to the velocity gradient of the mean flow:  

𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜈𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗 (2-19) 

𝛿𝑖𝑗 = {
1,   𝑖 = 𝑗
0,   𝑖 ≠ 𝑗

 (2-20) 

where 𝑘 is the turbulent kinetic energy and 𝜈𝑡 is the turbulent viscosity. The closure problem is to 

model 𝜈𝑡. An overview of the common RANS turbulence models that predict 𝜈𝑡 are listed in Table 

3. All these models (LES or RANS) still lack accuracy or/and affordability when simulating 

complex long transient flows similar to CTH flows. These models are also calibrated on limited 

data. Hence, data-driven statistical models developed by ML algorithms (see Chapter 4) are 

suggested in this work. 
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Table 3. Different RANS turbulence models. 

Model Equation Applications 

Zero 

equation 

Model 

[44] 

This equation is based on dimensional analysis. Velocity scale is 

proportional to the velocity gradient, (𝑑𝑢/𝑑𝑦) and mixing 

length, 𝑙𝑚. 

𝑙𝑚 is introduced (the length over which there is a high interaction 

of vortices in a turbulent flow field). It is a problem-specific 

parameter. 

𝜈𝑡 = 𝑙𝑚
2 (

𝑑𝑢

𝑑𝑦
) (2-21) 

It works well 

only for 

flows that are 

characterized 

by a single 

𝑙𝑚. 

One 

equation 

models 

Velocity scale is proportional to the square root of the kinetic 

energy, 𝑘. One differential transport equation is developed for 

TKE [12]: 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑖

𝜕𝑘

𝜕𝑥𝑖
=

1

𝜎

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑖
] + 𝑃(𝑘) − 𝐷(𝑘) (2-23) 

Another model is the Spalart-Allmaras model where a transport 

equation is written for  νt 

𝜈𝑡 ≈ 𝑙𝑚√𝑘 (2-22) 
Performs 

poorly when 

𝑙𝑚 changes 

rapidly from 

wall to free 

shear region. 

It does not 

work for free 

jets, adverse 

pressure 

gradient and 

separated 

flows. 

Two-

equation 

model: 

(𝑘 − e) 
[19] 

𝜈𝑡 = 𝐶µ(𝑘
2 e⁄ ) (2-24) 

Two differential transport equations are developed for TKE, 𝑘  

(like equation (2-23)) and the turbulent dissipation rate, e: 

𝜕e

𝜕𝑡
 + 𝑈𝑖

𝜕e

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[(𝜈 +

𝜈𝑡

𝜎e
)

𝜕e

𝜕𝑥𝑖
] + 

𝐶e1𝑓e1e

𝑘
𝑃𝑘

+
𝐶e2𝑓e2e

2

𝑘
 

(2-25) 

 

More 

accurate in 

free shear 

flows. 

Poor in 

rotating 

flows. 

Parameters 

need tuning. 
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Table 4 (continued). Different RANS turbulence models. 

𝑘 − 𝜔 

[45] 

 

A transport equation for 𝜔 is developed similar to e  transport 

Equation, (2-25) given that ≈  
e

𝑘
 . 

Derived for 

wall-bounded 

flows. 

Sensitive to 

inlet 

boundary 

conditions 

Shear 

Stress 

Transport 

(k − ω) 

[46] 

Behaves like 𝑘 − 𝜔 near the wall and switches to 𝑘 − e  model 

away from the wall. 

It is called Shear Stress Transport (SST) model because it is 

based upon the shear stress relationship that the shear stress is 

proportional to the turbulent kinetic energy. 

Works for 

separation 

flow and 

adverse 

pressure 

gradient 

flows. 

2.5. Grid-Induced Error in LES, RANS, and CG-CFD 

The confidence in CFD results utilizing either RANS or LES is determined by two major 

factors: the physical modeling error and the numerical error. The physical modeling error is 

attributed to the model formulation, simplifications or assumptions made when developing the 

model. The numerical error includes round-off error, iterative error and discretization error. 

Minimizing the discretization error brings attention to the grid size. In this section, the grid 

refinement, required for traditional approaches (LES and RANS) and for the proposed approach 

(CG-CFD), is discussed. 

2.5.1. LES 

Given sufficiently fine grids, LES approach is capable of producing accurate results but 

the challenge here is the difficulty of determining the sufficient resolution without some 

knowledge about the flow behavior [47]. Attempting to perform successive grid refinement to get 

grid-independent solution will lead to resolving more small-scale turbulent eddies which will 
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finally transition to DNS as stated by Celik [48]: “A good LES is that which tends to DNS as the 

grid resolution tends to Kolmogorov scales. Therefore, there is no such thing as grid-independent 

LES in theory, because a grid-independent LES is essentially DNS, and the philosophy of LES 

loses its meaning if it is grid independent;”.  

Practically, LES is done based on the following criteria: (1) the computational resource 

limit, (2) the scale of the phenomena of interest (based on prior knowledge of physics), (3) 

dimensionless wall spacing, 𝑌+(see NOMENCLATURE section for 𝑌+ definition). For instance, 

for wall resolved LES, the grid requirements, in a flat plate domain, are: ∆𝑥+ < 150, ∆𝑦+ < 1,

∆𝑧+ < 40 which are significantly less demanding than DNS whose criteria are: ∆𝑥+ < 20, ∆𝑦+ <

1, ∆𝑧+ < 10. Here 𝑥, 𝑦, 𝑧, directions are referring to the stream-wise, wall normal and span-wise 

homogenous directions [49]. It is also necessary to assure that the cutoff wavenumber is in the 

inertial sub-region (at least in the regions of interest in the simulated domain).   

2.5.2. RANS 

 To estimate the discretization error, it is needed to find the asymptotic range where the 

solution is approximately independent. The existence of the asymptotic range, for quasi-steady 

state turbulent flow simulated by RANS with eddy viscosity models, was demonstrated [50]. 

Therefore, it is often required to demonstrate grid convergence (grid-independent solution) with 

RANS approach contrary to LES where grid convergence is not applicable [49]. When using wall 

functions with RANS, the first node from the wall should lie in the log region of the boundary 

layer (200 > 𝑦+ > 30) otherwise 𝑦+ is adjusted to be 1. If 𝑦+ < 30, when using wall functions, 

wall shear stress and/or wall heat transfer will be impacted. Hence, grid convergence study, in the 

presence of wall functions, fails) [47]. In general, given enough grid, LES gives more accurate 
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results compared to RANS. In some cases, physical error and numerical error compensate for each 

other so better performance is obtained at coarser grids [47].  

2.5.3. CG-CFD 

In the present work (CG-CFD), the goal is not eliminating discretization error and 

performing grid convergence study to obtain a grid-independent solution. Instead, the simulation 

is performed with a coarse grid which is expected to result in inaccurate result that is corrected by 

a data-driven model. In the proposed CG-CFD method, we are trying to answer these questions:  

• Is it possible to predict the coarse-grid induced error given some “local features” of the coarse-

grid results?  

• Which local features will be selected (velocity, pressure or other features)? 

• Is it feasible to use the computed grid-induced error to obtain sufficiently accurate solution? 

In this dissertation, we address and discuss these questions. In CG-CFD, it is not expected 

to capture the small-scale phenomena that are resolved by DNS. The goal is to predict the grid-

induced error in the large-scale phenomena. It is expected that the large-scale phenomena are 

usually the phenomena we are interested in. Hence, the coarseness of the grids utilized in CG-CFD 

is limited by the scale of the phenomena of interest so the utilized grids maybe coarser than those 

corresponding to RANS. CG-CFD framework is presented in Chapter 5. Numerical results that 

illustrate the feasibility of the proposed CG-CFD method are presented in Chapter 6. 

2.6. Chapter Summary 

Turbulence effects are typically modeled by Large Eddy Simulation (LES) or Reynolds 

Averaged Navier-Stokes (RANS) equations. In LES, turbulent flow large eddies are resolved 

directly while the sub-grid scale eddies (the ones which cannot be resolved using the coarser grid) 

are modeled. In general, LES is capable of simulating separated flow but it is not affordable when 
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simulating near wall flow at high Reynolds numbers. LES is still much more expensive than RANS 

which is the most used approach in industrial CFD. Each RANS turbulence models is calibrated 

for specific flow conditions (given specific experimental data). Hence, there is a need for data-

driven models that can be adaptive to different flow conditions. 

The grid-induced error is a major source of uncertainty which is traditionally reduced by 

performing grid convergence studies. For LES approach, attempting to perform successive grid 

refinement to get grid-independent solution will lead to resolving more small-scale turbulent 

eddies which will finally transition to DNS. Thus, LES computational cost may be comparable to 

DNS cost. For RANS approach, grid convergence study has some limitations because of the 

presence of the wall functions. For the proposed approach, in this work, the goal is not eliminating 

discretization error or performing grid convergence study to obtain a grid-independent solution. 

Instead, the simulation is performed with a coarse grid which is expected to result in inaccurate 

result. Next, the grid-induced error is predicted using a trained data-driven model. 
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3. NUMERICAL SOLUTION ERROR 

There are various sources of CFD errors (as was illustrated in Chapter 1 (in Figure 3)). The 

focus of this work is predicting the discretization error which arises when solving the governing 

equations numerically.  

Once the physical problem of interest is defined, the Partial Differential Equation (PDE) is 

created with well-defined initial and boundary conditions. The PDE in flow dynamics’ problems 

is represented by the NS equations (mass and momentum conservation laws) which include 

nonlinear terms and cannot be solved analytically for most practical cases. That is why NS 

equations are solved numerically. The numerical solution approach includes discretizing the 

problem domain by generating a computational grid and the discrete model is obtained and solved. 

After clarifying the objective of this chapter (Section 3.1), the methods, used to discretize 

the NS equations, are presented in Section 3.2. The discretized equations are solved using iterative 

methods (see Section 3.3). Discretization error and iterative convergence error are discussed in 

Sections 3.4 and 3.5, respectively.  

3.1. Objectives 

The objectives of this chapter can be summarized as follows: 

• Studying the major steps for solving Navier-Stokes equations numerically. 

•  Investigating the issues that arise due to the discretization error (mainly, the grid-induced 

error). 

3.2. Discretization Methods 

In this section, the methods, which are utilized to approximate the PDEs by a system of 

linear algebraic equations, are presented briefly. The presented methods include the Finite 

Difference Method (FDM), the Finite Element Method (FEM) and the Finite Volume Method 
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(FVM). FDM and FEM are presented briefly in Sections 3.2.1 and 3.2.2, respectively. Because 

FVM is the method which is used in this work (embedded in CFD software, OpenFOAM [10]), 

FVM is explained in more detail in Section 3.2.3. 

3.2.1. Finite Difference Method (FDM) 

In FDM, the flow variables and their derivatives are approximated at each point through 

the Taylor expansion of each variable around a point. For instance, if we consider a partial 

derivative  
𝜕𝜑

𝜕𝑥
, the Taylor-series expansion of 𝜑 around a point 𝑥𝑖 can be written as:  

𝜑(𝑥) = 𝜑(𝑥𝑖) + ∆𝑥 (
𝜕𝜑

𝜕𝑥
)
𝑖
+

(∆𝑥)2

2
(
𝜕2𝜑

𝜕𝑥2
)

𝑖

+ ⋯ (3-1) 

The higher order terms in the expansion can be neglected so the derivative of 𝜑 is given by: 

𝜕𝜑

𝜕𝑥
=

𝜑(𝑥𝑖 + ∆𝑥) − 𝜑(𝑥𝑖)

∆𝑥
+ ⋯ (3-2) 

Calculating the first order derivative by neglecting (truncating) the higher order terms is what 

causes the truncation error. Higher-order derivatives can be derived in a similar way. Estimating 

the derivatives based on the Taylor series can be done with different schemes. The scheme in 

Equation (3-2) is called forward finite difference scheme. Examples of the other schemes include 

the backward difference and the central difference schemes.  

After the derivatives are approximated using the present approach, the PDEs can be 

represented in the form of the system of linear equations. This system of algebraic equations is 

solved at each grid point. This system can be written in a matrix form as: 

A𝜑 = 𝑄 (3-3) 
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This system is solved with a matrix solving scheme given the initial conditions and the 

equations written for the boundary nodes. The FDM requires structured grids and cannot be applied 

with curvilinear coordinates (must be converted to Cartesian coordinates first). Because FDM has 

difficulties with irregular geometry, it is mainly used with simple geometry problems (e.g. box-

type domains) and it is utilized sometimes with DNS. Besides, FDM is not an inherently 

conservative method (does not conserve mass or temperature) and that is why it is rarely used in 

CFD industrial applications [51].  

3.2.2. Finite Element Method (FEM) 

FEM is a weighted residual method: If a general PDE is written as: 𝐿(φ) = 0, it is assumed 

that the equation has an approximate solution, �̅� which has a form: 

�̅� = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯ .. (3-4) 

where 𝑎0, 𝑎1, 𝑎2,.. are unknown coefficients that need to be computed. Using initial coefficients, 

�̅� will not satisfy the original PDE therefore the residual, 𝑅 is defined as: 𝐿(φ̅) = 𝑅. In FEM, the 

residual is driven to equal zero, using weight functions 𝑊 as follows: 

∫𝑊𝑅𝑑𝑥 = 0 (3-5) 

In this way, PDEs are integrated over an element after being multiplied by a weight function. 

Because the continuous PDE is divided into a finite number of elements, the method is called the 

Finite element method. FEM can be used with complex geometries [52]. The solution is obtained 

at element nodes, and typically linearly approximated within each element to obtain the continuous 

distribution of state variables in the domain. 



www.manaraa.com

 

37 

 

3.2.3. Finite Volume Method (FVM) 

Unlike FEM and FDM, the variables’ values are computed at the centers of the grid cells 

on the meshed domain and the equation is integrated over the volume of the grid cell. Applying 

FVM method with NS equation, NS equation is integrated over the computational cell with the 

assumption that the time-dependent term in NS equation is constant over the cell volume as 

follows: 

∭𝑑𝑉 [
𝜕𝑢𝑖

𝜕𝑡
+

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
]

𝑉

= ∭𝑑𝑉 [−
𝜕𝑝𝑘

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
]

𝑉

 (3-6) 

𝑉 is the cell volume. The divergence theorem is applied so the volume integrals are replaced by 

surface integrals: 

𝑉
𝜕𝑢𝑖

𝜕𝑡
+ ∬𝑑𝐴𝑢𝑖𝑢𝑗𝑛𝑗

𝐴

= −∬𝑑𝐴𝑝𝑘𝑛𝑖
𝐴

+ ∬ 𝑑𝐴𝜈
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑛𝑗

𝐴

 (3-7) 

𝐴 is the surface area of the cell, 𝑛 is the cell’s surface normal vector. The integrated NS equation 

consists of four terms which need to be linearized. The four terms are (from left to right): the time 

dependent term, the convection term, the pressure term and the diffusion term. These four terms 

are linearized with different schemes which are explained in the following subsections [53]: 

The time-dependent term 

The time change of the velocity 𝑢𝑖 or any variable 𝜑 can be discretized by the implicit Euler 

scheme:  

𝜕𝜑

𝜕𝑡
=

𝜑𝑃
𝑛 − 𝜑𝑃

𝑜

∆𝑡
 (3-8) 

The superscripts 𝑜 and 𝑛 refer to the variable values which are stored from the previous time step 

and the time step we solve for respectively. The subscript 𝑃 is referring to the center of the cell of 
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interest. The Euler time integration scheme is a first-order accurate scheme (numerical scheme is 

nth order accurate if the error is proportional to (∆𝑡)𝑛). For getting higher-order accuracy (second 

order), the backward difference scheme can be used: 

𝜕𝜑

𝜕𝑡
=

3𝜑𝑃
𝑛 − 4𝜑𝑃

𝑜 + 𝜑𝑃
𝑜𝑜

2∆𝑡
 (3-9) 

Where the superscript 𝑜𝑜 refer to the variable value stored from a time step previous to the last. 

The convective term 

The convective term of the velocity component 𝑢𝑖 or any convected variable 𝜑 is discretized as 

follows: 

∬ 𝑑𝐴𝜑𝑢𝑗𝑛𝑗 = ∑(𝐴𝑓 . 𝑈𝑓)𝜑𝑓

𝑓𝐴

 (3-10) 

where the subscript 𝑓 refer to the computational cell faces (6 faces for a cubic cell). (𝐴𝑓 ∙ 𝑈𝑓) is 

the dot product of the velocity vector and the face area at each face. The face field 𝜑𝑓 can be 

computed by various schemes such as Central Differencing (CD): 

𝜑𝑓 = 𝑓𝑥𝜑𝑃 + (1 − 𝑓𝑥)𝜑𝑁 (3-11) 

𝑃 and 𝑁 are the centers of the cell of interest and the neighboring cell. 𝑓𝑥 is the distance between 

the face 𝑓 and cell center 𝑁 divided by the distance between cell centers 𝑃 and 𝑁. CD is a second 

order accurate scheme, but it is unbounded. Being unbounded means that it may result in a solution 

which does not lie in the physical bounds. Before convergence is reached, CD scheme may result 

in a solution which does not satisfy the continuity equation (unbounded). Hence, the convergence 

rate and the stability of the solution can be impacted. 
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Another alternative is the Upwind Differencing (UD) which is bounded but not very 

accurate. It determines 𝜑𝑓 based on flow direction as follows: 

𝜑𝑓 = {
𝜑𝑃 𝑓𝑜𝑟 (𝐴𝑓 . 𝑈𝑓) ≥ 0

𝜑𝑁 𝑜𝑟 (𝐴𝑓 . 𝑈𝑓) < 0
 (3-12) 

It is also possible to mix both CD and UD in what is called the Blended Differencing (BD). In this 

way, boundedness and reasonable accuracy are maintained as follows: 

𝜑𝑓 = (1 − 𝛾)𝜑𝑓
𝑈𝐷 + 𝛾𝜑𝑓

𝐶𝐷 (3-13) 

where the value of the blending coefficient, γ is specified by the user (0 > γ > 1).  

The pressure term 

The pressure term is linearized as follows: 

−∬𝑑𝐴𝑝𝑘𝑛𝑖
𝐴

= −∑𝑝𝑘𝑓
. 𝐴𝑓

𝑓

 (3-14) 

The diffusion term 

The diffusion term (Laplacian term) of the velocity component 𝑢𝑖 or any variable 𝜑 is linearized 

as follows: 

∬ 𝑑𝐴𝜈
𝜕𝜑

𝜕𝑥𝑗
𝑛𝑗

𝐴

= 𝜈 ∬𝑑𝐴. (𝛻𝜑)
𝐴

= 𝜈 ∑𝐴𝑓 .

𝑓

(𝛻𝜑)𝑓 (3-15) 

𝐴𝑓 . (𝛻𝜑)𝑓 = |𝐴𝑓|
𝜑𝑁 − 𝜑𝑃

|𝑑|
 (3-16) 

where d is the distance between the cell centers 𝑁 and 𝑃. 

https://en.wikipedia.org/wiki/Laplacian_matrix
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3.3. Iterative Methods 

Solving incompressible NS equations, including the continuity equation (∇ ∙ 𝑈 = 0), is not 

a straightforward process because there is no explicit equation for the pressure. A pressure equation 

can be derived by taking the divergence of the momentum equation and substituting in the 

continuity equation as follows. 

The NS equation is written in a semi-discretized form (using the numerical schemes 

presented in section 3.2): 

𝑎𝑃𝑈𝑃 = 𝐻(𝑈) − 𝛻𝑝𝑘 (3-17) 

𝐻(𝑈) = −∑𝑎𝑁𝑈𝑁

𝑛

+
𝑈𝑜

∆𝑡
 (3-18) 

where 𝑎𝑃 and 𝑎𝑁 are the matrices of the coefficients of the cell of interest 𝑃 and the neighboring 

cells, 𝑁. The momentum equation is interpolated for the face velocity, 𝑈𝑓: 

(𝑎𝑃)𝑓𝑈𝑓 = (𝐻(𝑈))𝑓 − (𝛻𝑝𝑘)𝑓 (3-19) 

Substituting Equation (3-19) into discretized continuity equation (Equation (3-20)), the pressure 

equation is obtained (Equation (3-21)). 

∑𝐴𝑓 . 𝑈𝑓

𝑓

 (3-20) 

𝛻. (
1

(𝑎𝑝)𝑓

(𝛻𝑝𝑘)𝑓) = 𝛻. (
(𝐻(𝑈))𝑓

(𝑎𝑝)𝑓

) (3-21) 

Iterative procedures are necessary to solve the discretized pressure equation and the 

momentum equation together. There are various algorithms to do these procedures. Here, Pressure 
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Implicit Splitting of Operators (PISO algorithm) is presented as an example of how the pressure-

velocity coupling is treated.  

The PISO algorithm 

PISO algorithm [54] is described as follows: 

• Momentum predictor: Initially the pressure field is unknown so the pressure field from the 

previous time step is used to solve the momentum equation to get an estimation of the velocity 

fields. 

• Pressure solution: Given the estimated velocity field, the pressure equation is solved to obtain 

a new pressure field. 

• Velocity correction: Based on the new pressure field, the velocity field is corrected using the 

pressure equation. 

• This loop (momentum predictor, pressure correction, and velocity correction) is repeated until 

convergence is achieved.  

3.4. Discretization Error 

Representing the flow PDE equations in a discrete form results in the discretization error 

which includes the errors due to the spatial and temporal approximations. The discretization error 

is eliminated when the grid spacing and the time step tend to go to zero (which would make the 

computational cost infinite). To determine the discretization error in a particular solution, a grid 

convergence study is performed (a temporal convergence study is done as well). 

Grid convergence study 

Grid convergence examination requires performing the simulation with a set of 

successively finer grids. As the grid is refined, the discretization error approaches zero 

asymptotically. The behavior of the solution error is characterized by the grid convergence order. 
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The discretization error, 휀∆, is related to the grid spacing, ∆, and the convergence order, 𝑝, as 

follows [55]: 

ε∆  ≈ ∆p (3-22) 

For instance, the solution is a second order correct if 𝑝 = 2. The value of 𝑝 can be estimated 

theoretically based on the used numerical schemes. However, the actual order of convergence is 

usually lower that the theoretical one because of the boundary conditions. When determining the 

value, 𝑝, the ratio (휀∆ ∆𝑝⁄ ) is an indication of the asymptotic range. Asymptotic range is reached 

when the ratio  (휀∆ ∆𝑝⁄ ) gets constant. 

Discretization error estimation 

Usually the discretization error is difficult to estimate. Various approaches have been 

proposed to perform this task. The discretization error estimators include Richardson extrapolation 

[56], adjoint methods, and discretization error transport equation [55]. Reliability of the error 

estimator demands to have numerical results that lie in the asymptotic range. Reaching the 

asymptotic range is computationally expensive for the three-dimensional NS equations. 

3.5. Iterative Convergence Error 

As explained in Section 3.3, the momentum and pressure equations are solved by iterative 

algorithms. The iteration loop continues until a convergence criterion is achieved. The 

convergence criterion is typically one the following criteria: 

• Residual value: The residual is computed by substituting with the numerical result in the 

numerical equations at each grid cell. Theoretically, the residual should equal zero but in 

reality, it never gets to zero. The value of the acceptable maximum residual is typically 

specified by the user. 
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• The quantity of interest convergence: The user may be interested only in one quantity (for 

instance, the maximum temperature over the domain). Therefore, the Quantity Of Interest 

(QOI) can be monitored to assure that that the change in QOI with iteration is smaller than a 

maximum allowed value.  

The iterative convergence error cannot be completely removed because a stopping criterion must 

exist. Although it is possible to reduce the iterative convergence error by reducing the residual 

criterion (for instance), the number of iterations will increase with the reduction in the residual 

criterion value. This results in a high computational cost.  

3.6. Chapter Summary 

The Navier-Stokes equations are approximated by a system of linear algebraic equations. 

Discretization methods which are utilized to approximate the Navier-Stokes equations include 

Finite Difference Method (FDM), the Finite Element Method (FEM) and the Finite Volume 

Method. FDM method is rarely used in CFD industrial applications. FEM and FVM can be used 

with complex geometries.  

Solving the discretized Navier-Stokes equation requires iterative procedures. Both 

discretization methods and iterative algorithms result in numerical errors. Reducing the 

discretization error (by refining the grid and/or the time step) or reducing the iterative convergence 

error (by achieving convergence criteria) leads to a higher computational cost. 

The focus of this research is the discretization error. Typical discretization error estimators 

(like Richardson extrapolation) demands to have numerical results that lie in the asymptotic range. 

Reaching the asymptotic range is computationally expensive for three-dimensional Navier-Stokes 

equations. Hence, in this work, a data-driven method is proposed to predict the discretization error 
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(grid-induced error) given the results computed by the grids which are away from the asymptotic 

convergence range. 
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4. MACHINE LEARNING 

Traditionally, phenomena in a nuclear reactor and containment thermal hydraulics have 

been investigated by means of scaled experiments, including separate-effect tests and integral-

effect tests. More recently, due to the increasingly affordable computing power and the advances 

in numerical solution methods and tools, there is a growing interest and application of CFD for 

modeling and simulation of separate thermal hydraulic processes and components of nuclear 

power plants. Examples of experimental studies of thermal-hydraulic effects, such as BWR 

suppression pool thermal stratification and hydrogen mixing and distribution can be found in [57, 

58]. Also, examples of CFD studies of buoyant convection and suppression pool direct contact 

condensation can be found in [59, 60]. 

The experimental studies and high-fidelity simulations result in a large amount of data (a 

lot of flow variables distributed in space and time) which is useful but not optimally usable. It is 

hard to explore/ analyze/ model/ exploit the “big data” generated by high-resolution validated 

numerical simulations and physical experiments. ML algorithms are used to find patterns in data 

and build new models that predict new outcomes based on historical data. In general, ML 

algorithms are classified depending on the available information and the user purpose in two types: 

supervised learning and unsupervised learning. Supervised learning demands having a set of input 

variables (also called features) and their corresponding outputs. These inputs and outputs help to 

train a model that could predict the output for a new input. Supervised learning includes 

applications like regression and classification. On the other side, unsupervised learning is more 

challenging because the observations (raw data) are just given without identifying inputs or 

outputs. Its function is to extract the internal relationships in the dataset. For instance: grouping 
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the data (clustering) or recognizing the anomalies in the dataset or discovering the association 

between some variables.   

ML algorithms are also classified as categorical or continuous depending on the type of 

data. Numerical data like velocity or pressure represent continuous data while the type of the flow 

(laminar/turbulent) or (bubbly/slug/annular) represent categorical data. A general taxonomy of ML 

applications, with examples of some algorithms, is illustrated in Table 5 [61]. In this chapter, an 

overview is presented for the different ML algorithms. Among these algorithms, Artificial Neural 

Network (ANN) and Random Forest Regression (RFR) techniques are used in this work for 

regression. Therefore, ANN and RFR are explained in more detail.  

Table 5. Taxonomy of ML algorithms. 

 Continuous Categorical 

S
u

p
er

v
is

ed
 

Regression (Section 4.5) 

• Artificial Neural Network (ANN). 

• Deep Learning (DL). 

• Random Forest Regression (RFR). 

Classification (Section 4.4) 

• Support Vector Machines 

(SVM). 

 

U
n

su
p

er
v
is

ed
 

Clustering (Section 4.2) 

• K-means clustering. 

Dimensionality reduction (Section 4.3) 

• Principal Component analysis (PCA). 

Association analysis1 

• Apriori algorithm. 

4.1. Objectives 

The objectives of this chapter can be summarized as follows: 

                                                 
1 Association analysis algorithms are not presented in this dissertation as they have no applications in fluid dynamics 

(to the extent of our knowledge). 
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• Providing an overview of the machine learning algorithms that can be used for CFD 

applications.  

• Discussing the machine learning regression algorithms that are used in this work (artificial 

neural network and random forest regression). 

4.2. Clustering 

Clustering is a process of grouping the data in a way that each group (cluster) of data 

includes data points that are closer to each other. It is one of the data mining techniques that may 

precede the regression process because sometimes the entire data set cannot be represented by a 

single model. Therefore, the data are clustered into different groups and each group is represented 

by a different correlation. 

One of the clustering techniques is the 𝑘-means clustering, or Lloyd's algorithm [62]. The 

𝑘-means clustering is an iterative algorithm which assigns 𝑛 data points to one of the 𝑘 clusters. 

Each cluster is defined by a centroid and 𝑘 is the number of the clusters (chosen before the 

algorithm starts). The algorithm can be summarized in the following steps:  

1. Initial 𝑘 centroids are selected.  

2. Point to cluster centroid distance for each data point is computed.  

3. Each observation is assigned to the cluster with the closest centroid.  

4. The average of observations in each cluster is computed to gain new centroids.  

5. Steps 2, 3 and 4 are repeated until cluster assignments do not change.  

To determine how well the groups are separated, a silhouette plot is used. The silhouette 

value for any point is a metric of the point similarity to other points in the same group, compared 

to points in other groups. The silhouette value 𝑆𝑖 for point 𝑖 is: 

javascript:void(0);
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𝑆𝑖 =
𝐵𝑖 − 𝐴𝑖

𝑚𝑎𝑥(𝐵𝑖, 𝑎𝑖)
 (4-1) 

where 𝐴𝑖 is the average distance from the 𝑖th point to other points in the same cluster. 𝐵𝑖 is the 

minimum average distance from 𝑖th point to points in a different cluster (averaging is performed 

for each single cluster and minimization is done over clusters). 𝑆𝑖 value ranges from −1 to 1. If 𝑆𝑖 

is closer to 1, this indicates that this 𝑖th point is well matching to its cluster. Negative silhouette 

values indicate that the point was assigned to the wrong cluster. 

4.3. Dimensionality Reduction 

Given a high-dimensional dataset, it would be useful to reduce the dimensionality of the 

data by extracting the features which are more important. This will allow faster computations and 

easier data regression (if needed). It also helps to visualize the data and reduce the storage space. 

It may even give insights into physics by investigating why some features impact the figure of 

merit more than other features. 

One of the popular techniques for dimensionality reduction is the Principal Component 

Analysis (PCA) [63]. The Principal Components (PCs) are the new set of features which are 

generated to replace the original features. Each PC is a linear combination of the original features. 

The first PC is the axis of the highest variability of data while the second PC is the next orthogonal 

(uncorrelated) direction with the highest variability and so on.  

PCA is performed through these procedures:  

1. Given a data matrix 𝑋𝑘×𝑁 (𝑘 features and 𝑁 samples), a covariance matrix, 𝑆𝑘×𝑘 for the 

data, 𝑋 is computed.  

2. An equation for the eigenvectors 𝑒 and the eigen-functions 𝜆 is solved as follows: 
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𝑆𝑒 = 𝜆𝑒 (4-2) 

𝑃 = 𝑋𝑒 (4-3) 

where 𝑒 is the eigenvectors matrix (also named empirical orthogonal function). The eigenvectors 

(orthogonal functions) are the new system of coordinates in which the data can be described instead 

of the original variables. The eigenvalues, 𝜆 represent the importance of each orthogonal functions 

so the functions with smaller eigen-values can be ignored (that is how dimensionality is reduced). 

The principal component values, 𝑃 at any point represent how much each orthogonal function is 

more dominant at this point. PCA approach was used in the field of fluid dynamics to produce 

simplified (reduced order) models given high-fidelity CFD results (see [64]). 

4.4. Classification 

A classification problem is a problem in which all the available observations can be 

categorized in some distinct classes (for instance: incompressible vs. compressible flow or laminar 

vs. turbulent flow) and the function of the classification algorithm is to find the distinction or the 

separating line between the different classes. Given this separating line, the classification 

algorithm predicts the category to which a new data point belongs. One of the most successful ML 

algorithms for classification is Support Vector Machine (SVM) [65] which is explained here as an 

example of the classification algorithm. 



www.manaraa.com

 

50 

 

 

Figure 6. Illustration of the classification problem: various dashed lines separating two groups of 

data. 

As depicted in Figure 6, for two groups of data points (red and green points), there is a lot 

of possible hyper-planes (or dashed lines for two-dimensional space) separating the two groups. 

SVM algorithm works to find the optimal separating plane. Given input feature, 𝑥𝑖, the output is 

taken to be 𝑦𝑖  {−1,+1} while 1 and −1 refer to the green points and red points respectively. 

Any hyper-plane separating the two groups of points is described by an equation:  

�⃗⃗� 𝑇 ∙ 𝑥 + 𝑏 = 0 (4-4) 

while the vector �⃗⃗�  and the constant 𝑏 characterize the hyper-plane. The aim is finding a hyper-

plane which can classify the data as follows: 

�⃗⃗� 𝑇 ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏 > 1 when 𝑦𝑖 = 1 (4-5) 

�⃗⃗� 𝑇 ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏 < −1 when 𝑦𝑖 = −1 (4-6) 

The two lines (or hyper-planes), that are represented by solid lines and named 𝐴1 and 𝐴2 in Figure 

6, are identified respectively by the equations: 
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�⃗⃗� 𝑇 ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏 = 1  (4-7) 

�⃗⃗� 𝑇 ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏 = −1  (4-8) 

The red or green points on planes 𝐴1 and 𝐴2 are the support vectors. The support vectors are the 

points that matter for the training process and the other points can be ignored. The perpendicular 

distance between 𝐴1 and 𝐴2 is called the margin. The bigger the margin, the better the 

classification process. The margin, 𝐷 can be given by: 

𝐷 =
2

‖�⃗⃗� ‖
  (4-9) 

Therefore, the margin is maximized by minimizing the magnitude of the vector �⃗⃗�  while satisfying 

the two conditions (Equations (4-7), (4-8)). This becomes an optimization problem to find the 

optimum �⃗⃗�  based on the given training data. Thus, the optimal separating hyper-plane is found. 

SVM is an accurate classification tool that can deal with the high-dimensional dataset (even when 

the number of samples is fewer than the number of features) but it is sensitive to noisy data. SVM 

can be used as a classification tool in CFD applications. For instance, in [66], the classification 

ability of SVM is used for identification of two-phase flow regimes. 

4.5. Regression 

Regression is one of the most common uses of machine learning. Examples of the 

regression algorithms include Artificial Neural Network (ANN) (Section 4.5.1), Deep Learning 

(DL) (Section 4.5.2) and Random Forest Regression (RFR) (Section 4.5.3). 

4.5.1. Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a well-known non-linear adaptive regression tool that 

identifies a function that relates the given inputs and outputs [25]. ANN structure was originally 
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intended to mimic that of a human brain. ANN consists of computational units that are named 

artificial neurons. The biological neuron receives signals and activates if the signal is strong 

(exceeds a threshold), and then sends the signal to another neuron, and so on. The artificial neuron 

executes a similar process: it receives input variables which are multiplied by weights (which 

modify the signal strength) and are then processed by a mathematical activation function (like 

neuron activation) to produce the output.  

ANN structure 

ANN structure can be represented mathematically as follows [25]: 

where 𝑿 is the vector of features (inputs) and 𝑌 is the scalar output. The number of inputs is 𝑅 and 

the number of neurons is 𝑆. 𝑓 is the activation function, which is most often chosen to be a 

hyperbolic tangent function. For instance, in our case, 𝑿 is a vector of flow features computed at 

any point on the coarse grid of the simulation domain and the output variable 𝑌 is the local coarse 

grid-induced error. Given some number of samples, the weights, 𝑤 and 𝛼, and the biases, 𝑏 and λ, 

are adjusted to optimize the performance of the ANN by minimizing the Mean Squared Error 

(MSE). The MSE at each sample (data point) is defined as follows: 

where 𝑁 is the number of samples, and 𝑇𝑘 and 𝑌𝑘 are the target and its corresponding output 

(prediction by ANN) respectively at each point 𝑘.  

𝒂⏟
𝑆×1

= 𝑓( 𝒘⏟
𝑆×𝑅

𝑿⏟
𝑅×1

+ 𝒃⏟
𝑆×1

) (4-10) 

𝒀⏟
𝟏×𝟏

= 𝜶⏟
𝟏×𝑺

𝒂⏟
𝑺×𝟏

+ 𝝀⏟
𝟏×𝟏

 (4-11) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑇𝑘 − 𝑌𝑘)

2

𝑁

𝑘=1

 (4-12) 
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ANN training and testing 

To adjust the weights and biases - that is, to train the ANN - there are many different 

algorithms. The algorithm that was used in this work is the Levenberg-Marquardt algorithm [67, 

68]. For a vector of weights and biases, 𝒁𝑘 (at iteration 𝑘), the iterative algorithm to update 𝑿𝑘 is: 

𝒁𝑘+1 = 𝒁𝑘 − [𝑱𝑘
𝑇𝑱𝑘 + 𝜇𝑰]−1𝑱𝑘𝒆𝑘 (4-13) 

where the vector of network error (the difference between target and output) is 𝒆 whose first 

derivatives with respect to weights and biases are contained in the Jacobian matrix, 𝑱. 𝑰 is the 

identity matrix, and 𝜇 is a positive number called the combination effect. 𝜇𝑰 is added to avoid 

having a non-invertible matrix, 𝑱𝑘
𝑇𝑱𝑘. 𝜇 is called the combination effect because if 𝜇𝐼 is large, this 

method is called the gradient descent method, and if 𝜇𝑰 is small (near zero), it becomes Newton’s 

method. The training process is started with a relatively large value of 𝜇 because the initial weights 

are far from the optimum weights. Large value of 𝜇 leads to a small weights update (i.e. (𝒁𝑘+1 −

𝒁𝑘) is small). If this update of weights leads to an improvement (MSE decreases so the output gets 

closer to the target), the 𝜇 value is decreased so the weights are allowed to change faster and the 

ANN training process gets faster. 

To test the efficiency of ANN, the samples are divided into three separate groups:  

(1) The training data (most of the data, typically 70% of the whole dataset): these samples 

are utilized by the network to adjust the weights and biases.  

(2) The validation data (typically 15% of the whole data): these samples are used to 

measure the network generalization (if MSE gets reduced with iterations for training data but it 

increases for the validation data group, which means the generalization deteriorates). Therefore, 

the training process stops when generalization stops improving.  
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(3) The testing data (typically 15% of the data): these samples do not influence the training 

process and they give an independent measure of the ANN predictive capability with a new dataset 

(one that was not used in the training process). 

ANN complexity 

It is worth noting that the number of coefficients which are tuned to minimize MSE is not 

small. The number of adjusted coefficients equals 𝑆[𝑅 + 2] + 1. For example, with 3 input 

variables and 10 neurons, the number of adjusted coefficients is 51. In general, ANN is used in 

cases where many data points are included. Therefore, the number of coefficients is relatively 

insignificant compared to hundreds or thousands of data points. 

4.5.2. Deep Learning 

Deep learning means using ANN with several layers between the input and output. The 

output of each layer is the input of the next one [30]. In this way, high order attributes (inputs) are 

extracted from the initial low order simple attributes in the first input layer. DL proved to be 

successful in dealing with many complex applications including speech recognition, object 

recognition and automatic game playing. However, DL is still computationally expensive 

compared to other ML algorithms such as Support Vector Machines (SVM) [65] or decision trees 

[69]. DL capability to obtain high accuracy is dependent on having a lot of data and adjusting a lot 

of coefficients during the training process. Thus, it takes much time. Another issue about DL that 

it is susceptible to overfitting because the number of weights and biases, that are adjusted through 

training the multi-layer ANN, is enormous (maybe comparable to the number of samples). Hence, 

the deep ANN may memorize the data instead of producing a more generally applicable model. 

Another factor to consider when dealing with DL is the variation of the conditions that need to be 
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set (hyperparameters) before getting satisfactory results including the number of layers, number 

of neurons per each layer and the initial weights. 

4.5.3. Random Forest Regression 

Random forest regression is composed of a group of regression trees. A regression tree 

[69]  predicts responses to input variables following the decisions in the tree from the root node 

down to a leaf node (see Figure 7). Each leaf node contains a possible response, 𝑌. Each step in 

the prediction involves checking the value of one predictor (input). On each predictor, all the 

possible binary splits are examined. The split that leads to the best result is selected; the 

optimization criterion is typically minimizing the MSE. The split may result in a child node that 

has very few observations (data); this is why a minimum leaf size (minimum observations per 

node) is specified a priori. For the new child nodes (new leaves), the same procedure is taken to 

split the new nodes. This process continues again and again. Therefore, the regression tree always 

has a stopping rule. The stopping rule means that the splitting stops when the number of the 

observations per leaf is equal to the minimum one.  

The process of splitting is illustrated in Figure 7, which represents a sample tree with 𝑥1,

𝑥2 and 𝑥3 as inputs (predictors) with 4 leaves (4 responses). Regression trees are computationally 

cheap, but they over-fit the data; this is why many trees are used together (tree bagging). 

In the tree bagging approach, a random sample of the training data is given to each 

regression tree so each tree is trained based on a different dataset. Hence, for a new sample (unseen 

data), each tree will make a different prediction. The prediction of the whole tree bag is the average 

of all the individual trees’ predictions [32]. 
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Figure 7. Regression tree. 

This method is called the random forest because a random subset of input variables 

(features) are utilized at each split in each tree (in the tree bag). If the number of the features is 𝑅, 

the number of features at each split is typically 𝑅/3 [70]. 

The sampling technique used in random forest algorithm is the bootstrap sampling [71]. In 

this technique, the sample size (for each individual tree) is equal to the original dataset size but the 

data are chosen with a replacement which means that some data points (rows) may be selected 

more than once and other rows are not chosen at all. This way, the data given to each tree is 

different so the trees’ predictions will be different and the over-fitting is eliminated when 

combining trees’ results together. On the other side, bootstrapping leads to a sample per tree which 

looks like the original sample of the original dataset. 

The optimum number of trees is determined based on the “Out Of Bag error” (OOB error). 

OOB error is the average prediction error on a training data point if we used the trees that did not 

have this data point when bootstrap sampling. It is always desired to achieve minimum OOB error; 

therefore, the number of trees is chosen based on this criterion. The typical number of trees in 

random forest algorithms is 100.  
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4.6. Chapter Summary 

Given a large amount of data (experiments and simulations) and many variables (fluid flow 

features distributed in space and/or time), machine learning algorithms can be used to explore data 

patterns and build regression models that predict new outcomes. Machine learning algorithms can 

be used for: (1) Classification, (2) Clustering, (3) Dimensionality reduction, and (4) Regression: 

1. A classification problem is a problem in which all the available observations can be 

categorized in some distinct classes (for instance laminar vs. turbulent flow) and the 

function of the classification algorithm is to find the separating line between the different 

classes. One of the classification algorithms is the Support Vector Machine (SVM). For 

instance, the classification ability of SVM is used for identification of two-phase flow 

regimes. 

2. Clustering is a process of grouping the data in a way that each group of data includes data 

that are closer to each other. It is may precede the regression process because sometimes 

the entire data set cannot be represented by a single model. Therefore, the data are clustered 

into different groups and each group is represented by a different correlation. An example 

of clustering algorithms is the k-means algorithm.  

3. Given a high-dimensional dataset, it would be useful to reduce the dimensionality of the 

data by extracting the features which are more important (Principal component analysis is 

an example of dimensionality reduction techniques). 

4. Regression is one of the most common uses of machine learning. Examples of the 

regression algorithms include Artificial Neural Network (ANN) and Random Forest 

Regression (RFR). Both ANN and RFR are used in this work. 
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• Artificial Neural Network (ANN) is a well-known non-linear adaptive regression tool that 

identifies a function that relates the given inputs and outputs. ANN consists of 

computational units that are named artificial neurons. The artificial neuron receives input 

variables which are multiplied by weights and are then processed by a mathematical 

activation function to produce the output.  

• Random forest regression is composed of a group of regression trees. A regression tree 

predicts responses to input variables following the decisions in the tree from the root node 

down to a leaf node. Each leaf node contains a possible response. Each step in the 

prediction involves checking the value of one (input). On each predictor, all the possible 

binary splits are examined. The split that leads to the best result is selected; the prediction 

of the whole tree bag is the average of all the individual trees’ predictions. 

A method, that shows how machine learning regression algorithms (ANN and RFR), is used for 

correlating the CG-CFD error with the coarse-grid flow features and presented in the next chapter 

(Chapter 5).  
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5. COARSE-GRID ERROR PREDICTION METHOD 

This work addresses the problem of the CG-CFD grid-induced error so the CG-CFD flow 

solution can be corrected to compensate for this error. This problem is presented in Section 5.2. 

The CG-CFD error can be predicted under certain hypothesis (see Section 5.3). The elements of 

this novel method, proposed for computing CG-CFD grid-induced error, are explained in Section 

5.4. The capability of the proposed approach is assessed by applying it on a turbulent flow inside 

a lid-driven 3D cavity (Section 5.5). 

5.1. Objectives 

The objectives of this chapter can be summarized as follows: 

• Developing a novel method for predicting the CG-CFD error, using machine learning 

algorithms, given the flow features computed by solution on coarse grids. 

• Discussing the hypothesis on which the proposed CG-CFD method is based. 

• Producing a set of scenarios that test the proposed CG-CFD method.  

5.2. Problem Statement 

The general problem to be addressed in this work can be formulated as illustrated in Figure 

8. In Figure 8, the vertical axis, ψ, is a number or a set of numbers that characterize the flow pattern 

(such as Reynolds number, Rayleigh number, domain aspect ratio, etc.), while the horizontal axis 

is the computational grid spacing, Δ. 

 For a specific problem of interest (in this work it is the flow inside a lid-driven cavity), the 

green-colored area in Figure 8 represents the high-fidelity data computed by sufficiently fine grids 

(∆ approaching zero). The subscript 𝑓 refers to a fine grid and 𝜑𝑓 is the flow variable of interest 

(e.g. velocity component or pressure) computed by a sufficiently fine grid. The red-colored area 

refers to low-fidelity computations, of 𝜑, performed by coarse grids, that may or may not have 
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corresponding available high-fidelity computations, 𝜑𝑓. The problem here is how to use the low 

fidelity and corresponding high-fidelity data to construct a function that can predict the correct 

value of a new (not available) 𝜑, given only the corresponding low-fidelity computation only.  

 

Figure 8. Workflow for data generation in the CG-CFD problem. 

Traditionally, a new high-fidelity computationally expensive simulation is performed for 

each new 𝜓. In this work, the benefit of the data is maximized using the available high-fidelity 

data to capture the relation between coarse and fine grid data to predict 𝜑 for a new case without 

having to run the expensive simulation. 

5.3. Research Hypothesis 

The present hypothesis is that the CG-CFD error is predictable, using data-driven surrogate 

model, under the following assumptions:  
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• The training flows (to train the surrogate model) and the testing flows (to test the trained 

surrogate model) have similar physics with similar complexity. To correct the grid-induced 

error over the whole domain (for the training flows), high-fidelity data over the whole 

domain are needed. 

• When comparing the fine and coarse-grid data, the number of the cells in both grids is not 

the same. Thus, to compute the local grid-induced error, it is necessary to perform mapping 

of the fine grid data onto the coarse grid. In other words, 𝜑𝑓 , is replaced by 𝜑𝑓→𝛥 (the fine 

grid field of 𝜑 mapped on a grid whose cell length is Δ). This mapping (averaging) 

constitutes a source of error because of losing some details of the fine-grid flow field 

profile. However, this mapped field is much more accurate than the field computed by a 

coarse grid (for instance, see Figure 2). 

• Using a coarse grid in the CG-CFD framework is limited by the scale of the phenomenon 

of interest. If the phenomenon of interest has a length scale, 𝑙, the coarse grids should have 

a grid spacing, ∆ < 𝑙. It is assumed that the phenomenon of interest has a scale that is large 

enough that a data-driven surrogate model can be used to predict the grid-induced error 

occurred due to the inability of the coarse grid to resolve sub-grid length-scales. 

• Sub-grid flow features, computed by a coarse grid, are expected to be inaccurate. However, 

it is hypothesized that the grid-induced error is a function of the inaccurate coarse-grid flow 

features. 

• For most of the similar efforts in the literature (e.g. [26, 27]) the aim was to get a data-

driven surrogate model that compensates for sub-grid effects; the ultimate goal was 

predicting a quantity of interest (such as the lift force or Nusselt number) or specific linear 

profile (such as the axial velocity profiles). On the other hand, in the present work, it was 
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assumed that we are interested in all the data through the whole domain (flow variable 

value at each grid cell). Thus, the proposed approach makes more use of the full field data. 

5.4. Proposed Approach 

This section presents the proposed method for the CG-CFD error prediction using ML 

algorithms. In the following paragraphs, we will discuss the error prediction method, feature 

selection, and ML error evaluation. 

5.4.1. CG-CFD Error Prediction Method 

The proposed method illustrated in Figure 9 consists of 2 sets of flows: training flows and 

testing flows. Training flows are utilized to construct a surrogate model of the grid-induced error 

as a function of the coarse-grid flow features. High-fidelity simulations of the training flows are 

performed with sufficiently fine grids and represented by 𝜑𝑓
𝑡𝑟(𝑡𝑟 refers to training flows). Next, 

the same simulation is performed again with a coarse grid producing 𝜑𝛥
𝑡𝑟. The fine-grid training 

flow solution, 𝜑𝑓
𝑡𝑟, is mapped onto the coarse grid, 𝛥, to obtain 𝜑𝑓→𝛥

𝑡𝑟 . Based on the coarse-grid 

simulations of the training flows, flow “features”, 𝑿(𝜑𝛥
𝑡𝑟), are computed. These features are the 

inputs to a surrogate model whose output is the local grid induced error, 휀𝛥(𝜑
𝑡𝑟): 

휀𝛥(𝜑
𝑡𝑟) = 𝜑𝑓→𝛥

𝑡𝑟 − 𝜑𝛥
𝑡𝑟= 𝐹(𝑿(𝜑𝛥)) (5-1) 

Selection of the features is discussed in the next section. The function 𝐹 is obtained from 

ML algorithms (ANN and RFR). The capability of the surrogate model, obtained from Equation 

(5-1), is assessed by applying the model on testing flows as illustrated in Figure 9. 
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Figure 9. The proposed method to predict CG-CFD error using ML algorithms. 



www.manaraa.com

 

64 

 

5.4.2. Features Selection 

Assuming a smooth profile for the flow variable, 𝜑, consider a Taylor series expansion 

for a flow field variable 𝜑 along the 𝑥-direction in a grid with a cell length of 𝛥𝑥: 

𝜑 = 𝜑0 + 𝛥𝑥
𝑑𝜑

𝑑𝑥
|
𝛥𝑥

+
(𝛥𝑥)2

2

𝑑2𝜑

𝑑𝑥2
|
𝛥𝑥

+ ⋯ (5-2) 

For a linear state variable profile, the grid-induced error will be of the order (𝛥𝑥)2 𝑑2𝜑

𝑑𝑥2|
𝛥𝑥

 

and the effect of 𝛥𝑥
𝑑2𝜑

𝑑𝑥2
|
𝛥𝑥

may be considered for non-linear profiles. The flow state variables’ 

derivatives were utilized before as indicators of the need for high local grid refinement in the 

adaptive-grid-refinement literature [72-74]. This was inspired by the general observation that a 

finer grid is needed near a discontinuity or a large gradient of the solution. Another idea to be 

considered is the fact that the value of the variable 𝜑 and its corresponding error at any grid cell is 

dependent on the value of 𝜑 and the corresponding error at the neighboring cells. Hence, the 

derivatives 
𝑑𝜑

𝑑𝑥
 and 

𝑑2𝜑

𝑑𝑥2 are carrying the effect of the neighboring cells. 

Additionally, the fluid flow is typically characterized by global numbers like Reynolds 

number, Rayleigh number, etc. Thus, we propose to utilize a local number (as flow feature) which 

substitutes for the global number. In the present work, the quantity of interest is the velocity. 

Therefore, we selected the cell Reynolds number as the local quantity of interest. The cell Reynolds 

number substitutes for the global velocity and length scales with local velocity and cell length, 𝛥. 

The cell Reynolds number, 𝑅𝑒𝛥, is defined in terms of the local velocity magnitude, |𝑈| and the 

kinematic viscosity, 𝜈: 

𝑅𝑒𝛥 = |𝑈|𝛥 𝜈⁄  (5-3) 
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Based on the previous discussions, the proposed features vector, 𝑋(𝜑𝛥), becomes: 

𝑿(𝜑𝛥) = (𝑅𝑒𝛥, (𝛥𝑥�̅�)
𝑑𝑢𝑖

𝑑𝑥�̅�
|
𝛥𝑥�̅�

, (𝛥𝑥�̅�)
2
𝑑2𝑢𝑖

𝑑𝑥�̅�
2
|
𝛥𝑥�̅�

) (5-4) 

The index 𝑗 ̅is used to indicate no summation. Actually, the term (𝛥𝑥�̅�)
𝑑𝑢𝑖

𝑑𝑥�̅�
|
𝛥𝑥�̅�

 represents 9 features 

because the velocity has 3 components: 𝑈𝑥,𝑈𝑦 and 𝑈𝑧. The derivative is performed with respect to 

3 directions: 𝑥, 𝑦 and 𝑧 (for instance: 
𝑑𝑈𝑥,

𝑑𝑥
,
𝑑𝑈𝑥,

𝑑𝑦
, 𝑒𝑡𝑐.). Similarly, the term (𝛥𝑥�̅�)

2 𝑑2𝑢𝑖

𝑑𝑥�̅�
2
|
𝛥𝑥�̅�

 represents 

27 features (accounting for all the second derivatives for the 3 velocity components).  

5.4.3. Data Comparison (Mapping) 

To compute the grid-induced error, it is necessary to compare the flow field computed by 

the fine and coarse grids. This comparison can be performed with different methods as illustrated 

in Figure 10. The first method is comparing each point on the coarse grid to the corresponding 

point on the fine grid. If there is no corresponding point on the fine grid, flow variable is 

interpolated on the fine grid.  

The second method is comparing each coarse-grid cell to the averaged field over the 

corresponding set of cells on the fine grid. Both methods result in information loss because of 

averaging. In this work, the second method (comparing cells) is used because, through the 

averaging process, more information from the fine grid is utilized compared to the first method. 
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Figure 10. Mapping flow variable, computed by a fine grid onto a coarse grid by one of two 

approaches: point to point (top) or cell to cell (bottom). 

5.4.4. Data Normalization 

When comparing different sets of CFD data, it is desired to use dimensionless data for 

performing comparisons between different geometries; hence, the features are normalized using 

the length scale and the velocity scale (see Table 6). The normalized features, �̃�, and the 

normalized grid induced-error, 휀�̃�
𝑡𝑟 , are incorporated into Equation (5-1) as: 

휀�̃�(𝜑
𝑡𝑟)= 𝐹(�̃�(𝜑𝛥)) (5-5) 
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In this work (a lid-driven cavity flow), the length scale, 𝑊, is the lid width, and the velocity scale 

is the cavity lid velocity, 𝑈𝑙𝑖𝑑. 

Table 6. Normalization factors for different variables. 

Feature Normalization factor 

𝛥 𝑊 

𝑑𝑢𝑖̅

𝑑𝑥�̅�

|
𝛥𝑥�̅�

 𝑊 𝑈𝑙𝑖𝑑⁄  

𝑑2𝑢𝑖̅

𝑑𝑥�̅�
2
|
𝛥𝑥�̅�

 𝑊2 𝑈𝑙𝑖𝑑⁄  

휀𝛥(𝑈𝑥), 휀𝛥(𝑈𝑦), 휀𝛥(𝑈𝑧) 𝑈𝑙𝑖𝑑 

5.4.5. Machine Learning Error Assessment 

To assess the accuracy of the surrogate model produced by ML algorithm, a metric, 𝐸𝑀𝐿 is 

proposed. This metric (ML error) is calculated as:  

𝐸𝑀𝐿 =
|휀�̃�

𝑎𝑐𝑡(𝜑) − 휀�̃�
𝑀𝐿(𝜑)|

𝜎�̃�𝛥
𝑎𝑐𝑡(𝜑)

 (5-6) 

where 휀�̃�
𝑎𝑐𝑡(𝜑) is the actual grid-induced error when computing the variable 𝜑 and 휀�̃�

𝑀𝐿(𝜑) is the 

estimated error. The difference between the actual and ML prediction of the grid-induced error is 

normalized by the standard deviation of the actual grid-induced error, 𝜎�̃�𝛥
𝑎𝑐𝑡(𝜑). Typically, when 

computing the surrogate model error, the difference between the actual and the estimated value is 
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divided by the actual value to get a relative error. However, here, we divide by the standard 

deviation of the actual value to avoid having zeros in the denominator. Additionally, computing 

ML error in Equation (5-6) gives the ML error in terms of the standard deviation of the grid-

induced error. 

5.5. Case Study 

The lid-driven cavity flow is one of the most studied problems in CFD [75, 76]. Although 

the problem can be stated relatively simply, the flow in a cavity features interesting flow physics 

with counter-rotating vortices appearing at the corners of the cavity [76], and it serves as a 

benchmark problem for numerical methods [77, 78]. 

The case studied here is a fluid contained in a cube whose height is one meter, with five 

fixed walls and one lid, moving with velocity, 𝑈𝑙𝑖𝑑 = 1 m/s  (see Figure 11). The physics of this 

problem is related to the global Reynolds number, 𝑅𝑒, which is defined in terms of the velocity 

magnitude, |𝑈|, the fluid kinematic viscosity, 𝜈, and the cavity characteristic length (lid width), 

𝑊. 

𝑅𝑒 =
|𝑈|𝑊

𝜈
 (5-7) 

At a Reynolds number between 2000 and 3000, an instability appears in the vicinity of the 

downstream corner [79]. As expected, the turbulence level near the wall increases with the 

increasing Reynolds number. The flow becomes fully turbulent near the downstream corner eddy 

at Reynolds number higher than 10,000 [79]. 
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Figure 11. Lid-driven cubic cavity. The lid velocity is parallel to the 𝑥-axis. 

5.5.1. Numerical Simulations 

In this work, CFD simulations were performed with one of the available open source CFD 

software packages, OpenFOAM [10]. All the simulations were performed with three-dimensional 

NS equations (incompressible flow of a viscous Newtonian fluid) [12]. NS equations are 

discretized in space using finite volume method (see the equations in Section 3.2.3) on meshes 

composed of hexahedral computational cells. For the spatial derivatives, the central difference 

scheme (second-order accurate) has been used [53]. 

High-fidelity simulations were performed on a 120 × 120 × 120 grid, with additional 

mesh refinement near the walls. The length of the cells touching the walls is 0.0014 meters so the 

total number of cells in the fine grid is 2 × 106 cells.  

In OpenFOAM, a transient solver (named pisoFoam) for incompressible, turbulent flow, 

using the PISO algorithm [54], was used. Using pisoFoam, unsteady simulation can be performed, 

but the focus of the present work is the quasi-steady-state three-dimensional flow inside the cavity.  
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5.5.2. Training and Testing Cases 

When training a surrogate data-driven model, the predictive capability of the model is 

impacted by the similarity or the difference between the training flows and the testing flow. Thus, 

to assess the surrogate model, different scenarios of the available training data and the targeted 

testing case are studied (see the list of scenarios in Table 7).  

For instance, in the first scenario, lid-driven cavity flows with Reynolds numbers (𝑅𝑒 ∈

(6000 ,8000 ,12000)) and simulated with the same grid size, 𝛥 = 1/30 𝑚, are used to train the 

model, in Equation (5-5). Next, this function, 𝐹, is used to predict 휀𝛥(𝜑) given the features 

computed by a coarse grid with 𝛥 = 1/30 𝑚 for a new Reynolds number, 𝑅𝑒 = 10000. The 1st 

scenario is not very challenging because the testing case Reynolds number lies in the training 

cases’ Reynolds numbers’ range (interpolation mode). The 2nd scenario gets more challenging by 

extrapolation in the direction of the global Reynolds number. In the next scenarios, the ML 

surrogate model is tested against more challenging scenarios by interpolating and extrapolating in 

terms of 𝑅𝑒 and 𝛥. In all the scenarios in Table 7 (except the last one), coarse-grid simulations are 

performed with uniform grids (the same grid spacing, 𝛥, in the three Cartesian coordinates). In the 

scenario X, testing flow simulation is performed with a grid that has a different grid spacing in 

different directions (𝛥𝑥 ≠ 𝛥𝑦 ≠ 𝛥𝑧). 

All the scenarios in Table 7 have the same geometry (cubic cavity) and the lid velocity 

(one meter per second). Reynolds number changes only by changing the kinematic viscosity. To 

test the capability of the surrogate model to predict the flow variables for different aspect ratios, 

additional scenarios are studied (see Table 8). The aspect ratio is the cavity height to width ratio 

(𝑯/𝑾). The height is the cavity side perpendicular to the lid (in 𝐲 direction) and the width is the 

other side (in 𝒙 or 𝒛 direction). 
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Table 7. Training and testing data (first set of scenarios in terms of 𝑅𝑒 and ∆). 𝑅𝑒 and 𝛥 are the 

Reynolds number and the grid spacing, respectively. 

Scenario 

Training flows Testing flow 

𝑅𝑒 𝛥 (𝑚) 𝑅𝑒 𝛥 (𝑚) 

I: 𝑅𝑒 interpolation. {6000, 8000, 12000} 
1

30
 10000 

1

30
 

II: 𝑅𝑒 extrapolation (higher  

 𝑅𝑒). 
{6000, 8000, 10000} 

1

30
 12000 

1

30
 

III: 𝑅𝑒 extrapolation (lower 

𝑅𝑒). 
{ 8000, 10000, 12000} 

1

30
 6000 

1

30
 

IV: ∆ interpolation. 12000 {
1

40
,
1

20
}  12000 

1

30
 

V: ∆ extrapolation (finer 

grid). 
12000 {

1

30
,
1

20
}  12000 

1

40
 

VI: ∆ extrapolation (coarser 

grid). 
12000 {

1

40
,
1

30
} 12000 

1

20
 

VII: 𝑅𝑒 and ∆ interpolation. { 8000, 12000} {
1

40
,
1

20
} 10000 

1

30
 

VIII: 𝑅𝑒 and ∆ extrapolation 

(higher  𝑅𝑒 and finer grid) 
{ 8000, 10000} {

1

30
,
1

20
} 12000 

1

40
 

IX: 𝑅𝑒 and ∆ extrapolation 

(lower and coarser grid). 
{ 10000, 12000} {

1

40
,
1

30
} 8000 

1

20
 

X: Different grid spacing in 

different directions. 
12000 {

1

40
,
1

30
,
1

20
} 12000 

𝛥𝑥 =
1

40
 

𝛥𝑦 =
1

30
 

𝛥𝑧 =
1

20
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Table 8. Training and testing data (second set of scenarios in terms of 𝑅𝑒, ∆, and 𝐻 𝑊⁄ ). 𝑅𝑒, 𝛥, 

and (𝐻 𝑊⁄ ) are the Reynolds number, grid spacing and aspect ratio, respectively 

Scenario 

Training flows Testing flow 

𝑅𝑒 𝛥 (𝑚) (𝐻 𝑊⁄ ) 𝑅𝑒 𝛥 (𝑚) (𝐻 𝑊⁄ ) 

XI: (𝐻 𝑊⁄ ) extrapolation. 6000 
1

30
 1 6000 

1

30
 1.2 

XII: (𝐻 𝑊⁄ ) and 𝑅e 

extrapolation. 
8000 

1

30
 1 6000 

1

30
 1.2 

XIII: (𝐻 𝑊⁄ ) , 𝑅e and 

∆ extrapolation. 
8000 

1

40
 1 6000 

1

30
 1.2 

Increasing the aspect ratio difference between training and testing data. 

XIV: (𝐻 𝑊⁄ ) 

interpolation. 
6000 

1

30
 { 1, 4} 6000 

1

30
 2 

XV: (𝐻 𝑊⁄ ) extrapolation 

to a lower ratio. 
6000 

1

30
 { 2, 4} 6000 

1

30
 1 

XVI: (𝐻 𝑊⁄ ) 

extrapolation to a higher 

ratio. 

6000 
1

30
 { 1, 2} 6000 

1

30
 4 

Increasing the Reynolds number. 

XVII: (𝐻 𝑊⁄ ) 

extrapolation to a higher 

ratio. 

12000 {
1

30
,
1

20
}  { 1, 2} 12000 

1

30
 4 

XVIII: (𝐻 𝑊⁄ ) 

extrapolation to a higher 

ratio and finer grid size. 

12000 {
1

30
,
1

20
}  { 1, 2} 12000 

1

40
 4 
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5.6. Summary 

The problem of interest here is how to use the coarse-grid simulations’ numerical data and 

the corresponding validated fine-mesh simulations numerical data to train a statistical model that 

can predict the correct value of the flow variable, we are interested in, given the corresponding 

coarse-grid simulations’ data only.  

The statistical model is trained using machine learning algorithms (e.g. artificial neural 

network and random forest regression) and tested using a new set of numerical data from coarse-

grid simulations. The training data and the testing data are similar in boundary conditions and 

physics (incompressible isothermal turbulent flow inside a lid-driven cavity) and different in 

Reynolds number (viscosity), grid size and aspect ratio. 

Local fluid flow features (based on the coarse-grid solution) are proposed based on Taylor 

series expansion and local cell Reynolds number. The local grid-induced error is hypothesized to 

be a function of those inaccurate flow features computed by coarse grids. 

A metric to quantify the machine learning error, when predicting the flow variable of 

interest, was proposed instead of inspecting the machine learning predictions qualitatively. 

A set of scenarios that test the proposed method are studied. These scenarios investigate 

the capability of the statistical model to interpolate and extrapolate outside the training data range. 

These scenarios also cover a range of Reynolds numbers in the turbulent flow and transitional flow 

range plus a range of grid sizes, aspect ratios and different variables of interest. 
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6. RESULTS AND DISCUSSIONS 

This chapter presents the results of applying the proposed grid-induced error prediction 

method on the flow inside a lid-driven cavity. We start by validating the high-fidelity fine grid 

simulations that are utilized to compute the grid-induced error (see Section 6.2). Next, the 

capability of the proposed CG-CFD approach, to predict the grid-induced error, is assessed given 

a variation of training and testing data (see Section 6.3). A set of numerical experiments are 

performed to predict the grid-induced error corresponding to the different velocity components 

given the scenarios listed in Section 5.5.2. 

6.1. Objectives 

The objectives of this chapter can be summarized as follows: 

• Assessing the capability of the proposed CG-CFD error prediction method by applying it on a 

three-dimensional turbulent flow numerical data. 

• Utilizing the computed grid-induced error to obtain the spatial distribution of the variable of 

interest. 

• Comparing artificial neural network and random forest regression in terms of accuracy and 

computational cost.  

6.2. Validation 

In this work, simulations are performed for a lid-driven cavity flow with Reynolds numbers 

ranging from 6,000 to 12,000. Because the grid size requirements increase with increasing 

Reynolds number, we started by validating OpenFOAM simulation results for a flow whose 

Reynolds number equals 12,000. Next, the grid, that was used with 𝑅𝑒 = 12,000, is also used for 

the lower Reynolds-number simulations. This ensures more than adequate resolution for lower 

Reynolds number simulations. Figure 12 compares the velocity profile captured with experiment 
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[80, 81] with the OpenFOAM simulations, performed as a part of the present work. Figure 12 

depicts the velocity profiles computed with different grids: ∆= 0.0083m (corresponding to 

120×120×120 grid), ∆= 0.0167𝑚 (corresponding to 60×60×60 grid), and ∆= 0.033𝑚 

(corresponding to 30×30×30 grid).  

It is shown that the computed profile agrees well with the experimental one when adding 

wall refinement cells. The finest grid (∆= 0.0083m with wall refinement near the wall) is utilized 

to gain high-fidelity data for different Reynolds numbers. This emphasizes the importance of 

resolving the wall flow region in the lid-driven cavity flow. Using coarse grids, without wall region 

refinement, results in inaccurate results. In the next section, uniform coarse grids (∆= 0.05m, ∆=

0.033m, ∆= 0.025m) inaccurate results are corrected with the help of a data-driven model. 

6.3. Training and Testing Cases 

This section goes through the scenarios listed in Section 5.5.2 (Table 7 and Table 8) to 

capture the grid-induced error for the testing flow if the surrogate model is trained with training 

flows’ data. The variable of interest, in the first 9 scenarios, was taken to be the spatial distribution 

of 𝑈𝑥. For the first scenario, both ANN (with 20 neurons) and RFR (with 100 regression trees) 

were used to predict 휀𝛥(𝑈𝑥). 
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Figure 12. The axial profile (𝑦 direction) for velocity, 𝑈𝑥 (top) and the axial profile (𝑥 direction 

for the velocity, 𝑈𝑦 (bottom) at 𝑅𝑒 = 12000. 
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6.3.1. Scenario I: Reynolds Number Interpolation 

Starting with one-layer ANN (represented by Figure 13), Figure 14 depicts the reduction 

in MSE with increasing the number of training iterations (epochs). In each iteration, ANN network 

weights and biases are re-adjusted to reduce the MSE given the target (actual 휀𝛥(𝑈𝑥)) and the 

output (ANN predicted 휀𝛥(𝑈𝑥)). It is shown that the MSE gets saturated at around 0.0001 after 78 

epochs. Ideally, MSE should be equal to zero. In Figure 14, a scatter plot, of the ANN-predicted 

휀𝛥(𝑈𝑥)  vs. the actual 휀𝛥(𝑈𝑥), is presented. The training flows, given to ANN, are divided into 

three groups (training, testing and validating data), as explained in Section 4.5.1. The dotted 

diagonal line plot represents a perfect agreement between the targeted and the predicted 휀𝛥(𝑈𝑥) 

while the solid line is the best fit for the available data. The correlation coefficient, 𝑅 is close to 

unity which indicates a very good agreement between the ANN prediction and the target value for 

all the data groups (training, testing and validating data groups). 

 

Figure 13. A representation of one-hidden-layer ANN with 37 inputs, 20 neurons and one output 

as represented by MATLAB [25]. 𝑤 and 𝑏 represent the weights and biases as presented in 

Section 4.5.1. 
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Figure 14.  ANN performance in scenario I (training flows). MSE vs. the number of iterations 

(epochs) (above). 휀𝛥(𝑈𝑥) expected by ANN vs. the actual 휀𝛥(𝑈𝑥) (below). 
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ANN predicts 휀𝛥(𝑈𝑥) but the variable of interest is 𝑈𝑥 (in particular: 𝑈𝑥𝒇→𝜟
= 𝑈𝑥𝜟

+

휀𝛥(𝑈𝑥)). A comparison between the actual 𝑈𝑥𝒇→𝜟
 and the ANN prediction of 𝑈𝑥𝒇→𝜟

 is illustrated 

in Figure 15. The vertical axis refers to the actual 𝑈𝑥𝒇→𝜟
 (𝑢𝑓 in Figure 15). The horizontal axis 

refers to one of three variables: (1) 𝑈𝑥𝒇→𝜟
 (𝑢𝑓), which corresponds to the solid black line, referring 

to the perfect case when the ANN-predicted 𝑈𝑥𝒇→𝜟
= 𝑈𝑥𝜟

+ 휀𝛥(𝑈𝑥) is exactly equal to the actual 

one; (2) 𝑈𝑥𝜟
(𝑢𝑐 in Figure 15) which corresponds to the crossed points referring to the coarse grid 

results compared to the fine grid results; (3) ML prediction (circled points), which computes 𝑈𝑥𝒇→𝜟
 

given coarse grid results, 𝑈𝑥𝜟
 ,and ANN prediction of 휀𝛥(𝑈𝑥).  

It is shown in Figure 15 that ML predictions for both training and testing cases are close to 

the ideal case. Some circled points deviated from the “ideal” solid line but most ML predictions 

(circled points) give visible improvements over the coarse-grid results (crossed points). Note that 

Figure 15 shows a regression of “big data”. For instance, training flows include data from 3 grids 

for training: each grid has 27,000 cells with 37 features computed at each cell. 
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Figure 15. Scenario I (Reynolds number interpolation) for 𝑈𝑥 (by ANN). ∆= 0.033𝑚. Training 

data (above) and testing data (below). CG: Coarse grid predictions. ML: Machine learning 

predictions. 
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For scenario I, RFR is also utilized for predicting 휀𝛥(𝑈𝑥). To optimize the number of trees 

in RFR, OOB error (explained in Section 4.5.3) is minimized. As illustrated in Figure 16, the OOB 

error gets saturated at a minimum value when using 100 regression trees. As was shown for the 

ANN, Figure 17 illustrates the comparison between RFR predictions and the coarse-grid 

predictions. RFR training is better than ANN without a single point deviating from the ideal solid 

line.  

6.3.2. Scenarios II and III: Reynolds Number Extrapolation. 

In the second scenario, the testing flow case gets more challenging because the testing case 

is outside of the training flows’ range. Prediction of the grid-induced error using ANN and RFR 

are presented in Figure 18 and Figure 19. ML predictive capability in scenario II is not as good as 

the scenario I. However, ML predictions are still better than coarse-grid results. RFR predictions 

do not deviate much away from the ideal line. In Table 9, a comparison between ANN and RFR 

efficiency, in different scenarios, is presented. The comparison is presented in terms of ML error, 

𝐸𝑀𝐿, defined by Equation (5-6) and the computational cost. In both scenarios (I and II), RFR leads 

to smaller mean and maximum 𝐸𝑀𝐿 compared to ANN. RFR is also computationally cheaper. 
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Figure 16. RFR OOB error decreases with increasing number of trees.  
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Figure 17. Scenario I (Reynolds number interpolation) for 𝑈𝑥 (by RFR). ∆= 0.033𝑚. Training 

data (above) and testing data (below). 
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Figure 18. Scenario II (Reynolds number extrapolation to a higher value) for 𝑈𝑥 (by ANN). ∆=
0.033𝑚. Training data (above) and testing data (below). 
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Figure 19. Scenario II (Reynolds number extrapolation to a higher value) for 𝑈𝑥 (by RFR). ∆=
0.033𝑚. Training data (above) and testing data (below). 



www.manaraa.com

 

86 

 

Table 9. A comparison between different scenarios in terms of ML error and computational time. 

Scenario ML 

Training data Testing data 
Variable 

of 

interest 
Mean 

𝐸𝑀𝐿 

Max 

𝐸𝑀𝐿 

Computational 

Time (min) 

Mean 

𝐸𝑀𝐿 

Max 

𝐸𝑀𝐿 

I: 𝑅𝑒 interpolation 

ANN 0.3 3.5 12.9 0.4 3.4 

𝑈𝑥 

 

 

 

 

 

 

 

 

 

 

RFR 0.06 1.5 11.1 0.3 2.8 

II: Extrapolation to 

a higher 𝑅𝑒 

ANN 0.3 7.6 13 0.4 7 

RFR 

 

 

 

 

 

 

 

 

 

 

0.06 1 11.2 0.4 2.7 

III: Extrapolation to 

a lower 𝑅𝑒 
0.07 1.3 11.3 0.4 2.9 

IV: ∆ interpolation 0.05 2 6.4 0.3 3 

V: Extrapolation to 

a finer ∆ 
0.05 1.1 3 0.4 4 

VI: Extrapolation to 

a coarser ∆ 
0.05 1.9 8.2 0.4 2 

VII: 𝑅𝑒 and 

∆ interpolation. 
0.06 1.5 22 0.3 4.6 

VIII: Extrapolation 

to a higher 𝑅𝑒 and 

finer ∆. 

0.06 1.2 13.3 0.3 3.3 

IX: Extrapolation to 

a lower 𝑅𝑒 and 

coarser ∆. 
0.07 1.8 32.3 0.4 2.3 

VII: 𝑅𝑒 and 

∆ interpolation. 
0.06 2.2 14.9 0.3 4.9 

𝑈𝑦 
VIII: Extrapolation 

to a higher 𝑅𝑒 and 

finer ∆. 

0.07 1.9 6.3 0.3 4.6 
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Table 10 (continued). A comparison between different scenarios in terms of ML error and 

computational time. 

VII: 𝑅𝑒 and 

∆ interpolation. 

RFR 

0.1 5.3 17.2 0.6 10 

𝑈𝑧 
VIII: Extrapolation 

to a higher 𝑅𝑒 and 

finer ∆. 

0.1 4.6 6 0.7 13.1 

X: Different ∆ in 

different directions. 
0.06 1.7 6.5 0.4 4.3 𝑈𝑥 

Adding more layers to ANN 

Statistical learning by ANN can become “deeper” by adding more hidden layers to the 

ANN as explained in Sections 4.5.1 and 4.5.2 and represented by Figure 20. Increasing the number 

of layers leads to a better data training for scenarios I and II (smaller ML mean and maximum ML 

error for training and testing data) as seen in Figure 21. However, RFR still gives better predictions 

than two or three-layer ANN (compare the ML error values in Table 9 with ML error in Figure 

21). There is a chance that multi-layer ANN may give better predictions by adding more layers, 

but the computational cost of this deep ANN is too high compared to RFR as illustrated in Figure 

22. Training deep ANN may take hours compared to minutes when training RFR although RFR 

still shows better predictive capability. Thus, for the next scenarios, only RFR is utilized.  

 

Figure 20. A representation of Three-hidden-layer ANN with 37 inputs, 20 neurons for each 

layer and one output as represented by MATLAB [25]. 
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Figure 21. Effect of increasing the number of neural network layers on ML error for the 

scenario I (above) and the scenario II (below). 
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Figure 22. Effect of increasing the number of neural network layers on the computational time. 

Why RFR may or may not perform better than deep ANN? 

• Deep ANN typically requires a lot of data for training. Although deep ANN was trained with 

thousands of data points, these points still represent few CFD simulations (e.g. few global 

Reynolds numbers). 

• Deep ANN may work even better given more layers and computational power. 

In scenario III (extrapolation to a lower Reynolds number, plotted in Figure 23), RFR still 

results in good predictions. 
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Figure 23. Scenario III (Reynolds number extrapolation to a lower value) for 𝑈𝑥 (by RFR). ∆=
0.033𝑚. Training data (above) and testing data (below). 
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6.3.3. Scenarios IV, V and VI: Grid Size Interpolation and Extrapolation. 

The focus of scenarios IV, V and VI is the grid size. RFR predictions for these scenarios 

are illustrated in Figure 24, Figure 25, and Figure 26. RFR performs very good data training for 

the three scenarios. RFR regression for the testing case is not as good as the training flows’ data. 

RFR predictions for the testing cases (interpolation or extrapolation to a finer or a coarser grid) are 

still close to the ideal solid line. In Table 9, the mean 𝐸𝑀𝐿 is around 0.4 for the three scenarios 

while the maximum 𝐸𝑀𝐿 increases when extrapolation to a finer grid (𝐸𝑀𝐿 = 4) and decreases in 

extrapolation to a coarser grid (𝐸𝑀𝐿 = 2). 

6.3.4. Scenarios VII, VIII and IX: Reynolds Number and Grid Size Interpolation 

and Extrapolation. 

Scenarios VII, VIII and IX are the most challenging ones because the testing flows differ 

from the training flows in both Reynolds number and grid size. As illustrated in Figure 27, Figure 

28 and Figure 29, most RFR predictions are very close the ideal solid line. According to Table 9, 

for the scenarios VII, VIII, and IX, the mean 𝐸𝑀𝐿  is 0.4 or lower, and the maximum 𝐸𝑀𝐿 is not 

high compared to the range of 𝐸𝑀𝐿 for previous scenarios which are less demanding. 

6.3.5. Other Variables 𝑼𝒚 and 𝑼𝒛 

All the previous numerical experiments were performed assuming that the variable of 

interest is 𝑈𝑥 (which corresponds to the velocity direction of the cavity lid motion). In this section, 

the variables 𝑈𝑦 and 𝑈𝑧 are considered with scenarios VII and VIII (in Table 7). Both scenarios 

VII and VIII were selected as they represent the more general scenarios (with testing flows’ grid 

size and Reynolds number different from the training flows). Note that the features’ vector defined 

in Equation (5-4) remains unchanged while the output of interest (휀𝛥(𝑈𝑥)) is replaced by 휀𝛥(𝑈𝑦) 

or 휀𝛥(𝑈𝑧). 
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Figure 24. Scenario IV (grid size interpolation) for 𝑈𝑥 (by RFR). 𝑅𝑒 = 12000. Training 

data (above) and testing data (below). 
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Figure 25. Scenario V (grid size extrapolation to a finer grid) for 𝑈𝑥 (by RFR). 𝑅𝑒 =
12000. Training data (above) and testing data (below). 
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Figure 26. Scenario VI (grid size extrapolation to a coarser grid) for 𝑈𝑥 (by RFR). 𝑅𝑒 = 12000. 

Training data (above) and testing data (below). 
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Figure 27. Scenario VII (Reynolds number and grid size interpolation) for 𝑈𝑥 (by RFR). Training 

data (above) and testing data (below). 
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Figure 28. Scenario VIII (extrapolation to a higher Reynolds number and a finer grid) for 𝑈𝑥 (by 

RFR). Training data (above) and testing data (below). 
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Figure 29. Scenario IX (extrapolation to a lower Reynolds number and a coarser grid) for 

𝑈𝑥 (by RFR). Training data (above) and testing data (below). 
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In Figure 30 and Figure 31, RFR predictions, for the velocity 𝑈𝑦, are compared to the true 

values. In both cases, RFR prediction gives an improvement over the coarse-grid predictions for 

most points. On the other hand, RFR performance is poor when predicting 𝑈𝑧 in Figure 32 and 

Figure 33. RFR predictions for 𝑈𝑧 give no improvement over the coarse-grid results. 

The performance of RFR in predicting 𝑈𝑦 and 𝑈𝑧 is assessed in Table 9 in terms of 𝐸𝑀𝐿. 

For the velocity component, 𝑈𝑦, 𝐸𝑀𝐿 is comparable to (a little bit higher than) 𝐸𝑀𝐿 when 

computing 𝑈𝑥. On the other hand, for the velocity 𝑈𝑧, ML errors for the testing data are very high 

compared to 𝑈𝑥 and 𝑈𝑦. For 𝑈𝑧, the correlation between the fine-grid velocity and the coarse-grid 

velocity is very poor. 𝑈𝑧 is very small (and less significant) compared to the other velocity 

components, so it is sensitive to any ML error. 

6.3.6. Computational Time for Big Data 

The capability of the trained model using Random Forest is expected to increase when the 

model is trained using a large dataset (more simulation cases). This large dataset leads to a higher 

computational time when training RFR. The effect of the data amount of the computational cost is 

depicted in Figure 34 using different scenarios in Table 7. The computational cost seems to 

increase almost linearly with the amount of training data points. 

6.3.7. Data Convergence 

In the proposed approach, the flow of interest (testing flow) simulation grid-induced error 

is predicted given a surrogate model based on data from the available training flows. It is necessary 

to explore how this surrogate model accuracy will be impacted by adding or removing some data. 

The surrogate model should give better performance with more training flows. This is called “data 

convergence”. 
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Figure 30. Scenario VII (Reynolds number and grid size interpolation) for 𝑈𝑦 (by RFR). 

Training data (above) and testing data (below). 
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Figure 31. Scenario VIII (extrapolation to a higher Reynolds number and a finer grid) for 

𝑈𝑦 (by RFR). Training data (above) and testing data (below). 



www.manaraa.com

 

101 

 

 

 

Figure 32. Scenario VII (Reynolds number and grid size interpolation) for 𝑈𝑧 (by RFR). Training 

data (above) and testing data (below). 
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Figure 33. Scenario VIII (extrapolation to a higher Reynolds number and a finer grid) for 𝑈𝑧 (by 

RFR). Training data (above) and testing data (below). 
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Figure 34. Big-data computational cost using random forest regression. 

Four studies of data convergence are presented in Table 11 (assuming that 𝑈𝑥 is the variable 

of interest). In the first study, all the training and testing flows have the same grid size (∆= 1/30 

m) while the Reynolds number changes. Adding more training data with Reynolds number closer 

to the testing data leads to a lower 𝐸𝑀𝐿. In the second study, adding more training data with 

Reynolds number far from the testing data, led to a lower mean 𝐸𝑀𝐿 and a little change in the 

maximum 𝐸𝑀𝐿. The studies III and IV focus on adding data with different grid size while the 

Reynolds number is fixed. The studies III and IV led to results similar to the first and the second 

studies. 
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Table 11. Data convergence study. 

# Testing flows Training flows Testing data 

mean 𝐸𝑀𝐿 

Testing data 

maximum 𝐸𝑀𝐿 

I 𝑅𝑒 = 12000, 

𝛥 = 1/30𝑚 

𝑅𝑒 = 6000, 𝛥 = 1/30𝑚 0.4 3.21 

𝑅𝑒 = 6000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 8000, 𝛥 = 1/30𝑚 

0.36 2.78 

𝑅𝑒 = 6000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 8000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 10000, 𝛥 = 1/30𝑚 

0.35 2.71 

II 𝑅𝑒 = 12000, 

 𝛥 = 1/30𝑚 

𝑅𝑒 = 10000, 𝛥 = 1/30𝑚 0.4 2.67 

𝑅𝑒 = 10000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 8000, 𝛥 = 1/30𝑚 

0.36 2.63 

𝑅𝑒 = 10000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 8000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 6000, 𝛥 = 1/30𝑚 

0.35 2.71 

III 𝑅𝑒 = 12000, 

 𝛥 = 1/40𝑚 

𝑅𝑒 = 12000, 𝛥 = 1/20𝑚 0.5 4.63 

𝑅𝑒 = 12000, 𝛥 = 1/20𝑚 

𝑅𝑒 = 12000, 𝛥 = 1/30𝑚 

0.38 4 

IV 𝑅𝑒 = 12000, 

 𝛥 = 1/40𝑚 

𝑅𝑒 = 12000, 𝛥 = 1/30𝑚 0.39 3.89 

𝑅𝑒 = 12000, 𝛥 = 1/30𝑚 

𝑅𝑒 = 12000, 𝛥 = 1/20𝑚 

0.38 4 

6.3.8. Scenario X: Different grid spacing in different directions. 

The focus of this scenario is varying the grid size spacing in the three Cartesian directions. 

Training simulations are performed with 3 uniform grids while the testing simulation is performed 
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with different grid spacing in each direction. RFR predictions, for the testing case velocity spatial 

distribution, are reasonably better than the coarse-grid predictions as illustrated in Figure 35.  

6.3.9. Scenario XI, XII and XIII (Extrapolation to Aspect Ratio =1.2). 

RFR, that was trained based on the flow field in the cubic cavity, is tested with a rectangular 

cavity whose aspect ratio =1.2 (aspect ratio extrapolation). RFR predictions for the rectangular 

cavity is close to the ideal solid line (as depicted in Figure 36). Extrapolation is also performed in 

terms of aspect ratio and Reynolds number together (see Figure 37) or even in the direction of 

aspect ratio, Reynolds number, and grid size together (see Figure 38). In both cases, RFR 

predictions introduced significant improvement over the coarse-grid predictions. The ML error 

that occurs because of extrapolation to a higher aspect ratio is not different from the ML error 

when extrapolating in terms of Reynolds number and grid size (see the range of ML errors in Table 

12). 

6.3.10. Scenario XIV, XV, XVI, XVII and XVIII (Aspect Ratio Interpolation and 

Extrapolation up to Aspect Ratio = 4). 

These scenarios are more challenging because the difference between the aspect ratios of 

the training and testing data is increased. Figure 39 illustrates training RFR based on the flow data 

of cavities with aspect ratios 1 and 4. Next, RFR model is tested with flow data of a cavity whose 

aspect ratio = 2 (interpolation mode). RFR predictions are significantly better than coarse-grid 

prediction (in Figure 39). However, it was found that RFR model performance can be improved 

by adding extra features (closest distance to the wall and the distance to the lid). These features 

improve the RFR predictions because the grid-induced error is typically higher near the boundaries 

(high flow variables’ gradients). The improvement that results from adding extra flow features can 

be noticed in Figure 40 and Table 12 (ML maximum error decreases).  
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Figure 35. Scenario X (different grid spacing in different directions) for 𝑈𝑥 (by RFR). Training 

data (above) and testing data (below). 
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Figure 36. Scenario XI (aspect ratio extrapolation) for 𝑈𝑥 (by RFR). Training data (above) and 

testing data (below). 
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Figure 37. Scenario XII (aspect ratio and Reynolds number extrapolation) for 𝑈𝑥 (by RFR). 

Training data (above) and testing data (below). 
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Figure 38. Scenario XIII (aspect ratio, Reynolds number, and grid size extrapolation) for 𝑈𝑥 (by 

RFR). Training data (above) and testing data (below). 
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Table 12. A comparison between different scenarios (second set of scenarios in terms of 𝑅𝑒, ∆ 

and (𝐻/𝑊)) in terms of ML error. 

Scenario 

Training data Testing data 

Mean 

(𝐸𝑀𝐿) 

Max 

(𝐸𝑀𝐿) 

Mean 

(𝐸𝑀𝐿) 

Max 

(𝐸𝑀𝐿) 

XI: Extrapolation to (𝐻/𝑊) = 1.2 0.05 1 0.3 2.9 

XII: Extrapolation to (𝐻/𝑊) = 1.2 and 

smaller 𝑅𝑒. 
0.05 0.8 0.3 3.9 

XIII: Extrapolation to (𝐻/𝑊) = 1.2, 
smaller 𝑅𝑒 and coarser ∆. 

0.04 0.9 0.4 2.4 

XIV: (𝐻/𝑊) interpolation up to aspect 

ratio = 4 
0.03 4.1 0.3 3.2 

XIV: (𝐻/𝑊) interpolation up to aspect 

ratio = 4 (after adding new features). 
0.02 1.3 0.3 2 

XV: Extrapolation to a lower (𝐻/𝑊). 0.02 0.6 1 16.5 

XVI: Extrapolation to a higher (𝐻/𝑊). 0.03 1 0.5 4 

In both Figure 39 and Figure 40, some crossed points are observed to deviate away from 

the general trend of the whole data. These points are corresponding to the velocity field computed 

in the cells adjacent to the lid. The same set of features (after adding the new ones) are utilized 

when extrapolating to a lower and higher aspect ratio (Figure 41 and Figure 42 respectively). In 

both cases, the testing data have a small ML error, on the average, but the maximum ML error, 

when extrapolating to a lower aspect ratio, is high (RFR prediction, in some locations, is worse 

than the coarse-grid prediction as illustrated in Table 12).  
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Figure 39. Scenario XIV (aspect ratio interpolation) for Ux (by RFR). Training data (above) and 

testing data (below). 
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Figure 40. Scenario XIV (aspect ratio interpolation), after adding new features, for 𝑈𝑥 (by RFR). 

Training data (above) and testing data (below). 
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Figure 41. Scenario XV (aspect ratio extrapolation to a lower ratio), for 𝑈𝑥 (by RFR). Training 

data (above) and testing data (below). 
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Figure 42. Scenario XVI (aspect ratio extrapolation to a higher ratio), for 𝑈𝑥 (by RFR). Training 

data (above) and testing data (below). 
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To show the similarity or difference between the flow patterns in the training and testing 

data, flow patterns corresponding to different aspect ratios are presented in Figure 43. The flow 

patterns are significantly different (different number of vortices and different vortex location).  

 

Figure 43. Velocity profile in x-direction inside the lid-driven cavity flow for different aspect 

ratios at 𝑅𝑒 = 6000. 
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In scenarios XVII and XVIII, aspect ratio extrapolation is performed at a higher Reynolds 

number (𝑅𝑒 = 12000). In both scenarios, RFR is making good predictions over the coarse-grid 

simulations (see Figure 44, Figure 45 and Figure 46). 

 

Figure 44. Training data from different aspect ratios and grid sizes for scenario XVII and XVIII 

for 𝑈𝑥 (by RFR) at 𝑅𝑒 = 12000. 
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Figure 45. Testing data for scenario XVII (aspect ratio extrapolation) for 𝑈𝑥 (by RFR) at 𝑅𝑒 =
12000. 

 
Figure 46. Testing data for scenario XVIII (aspect ratio and grid size extrapolation) for 𝑈𝑥 (by 

RFR) at 𝑅𝑒 = 12000. 
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Again, to show the similarity or difference between the flow patterns in the training and 

testing data, flow patterns corresponding to different aspect ratios are presented in Figure 47. 

 

Figure 47. Velocity profile in 𝑥 direction inside the lid-driven cavity flow for different 

aspect ratios at 𝑅𝑒 = 12000. 
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6.4. Chapter Summary 

Initially, the fine-grid simulations were validated against experimental data to ensure that 

the resolution of the fine-grid simulation of the lid-driven cavity flow is sufficiently fine. The 

coarse grids that were utilized to produce CG-CFD results are very coarse (the number of cells per 

grid ranges between 8,000 to 64,000 cells) compared to 2 million cells per the validated fine-grid 

solution. Coarse grids are uniform while an additional refinement was inserted near the wall, when 

performing the fine-grid simulation. Hence, there is a significant difference between the fine-grid 

and the coarse-grid solution (grid-induced error). 

The proposed statistical model was trained and tested in different scenarios. These 

scenarios include interpolation and extrapolation in terms of global Reynolds number or mesh size 

or aspect ratio. Typically, extrapolation scenarios are more challenging because the testing data do 

not lie in the range of the training data. Some scenarios were more challenging because of 

combining parameters together (e.g. Reynolds number and grid size extrapolation together). 

The range of Reynolds numbers include flows in the turbulent and transitional regime. The 

range of aspect ratio starts from 1 (a cubic cavity) to 4 (a tall rectangular cavity). The proposed 

statistical model was reasonably capable of compensating for the grid-induced error for most 

studied scenarios. 

The three-dimensional spatial distribution of the velocity grid-induced error was predicted. 

The velocity components (parallel and perpendicular to the cavity lid) were corrected given the 

computed grid-induced error while the third velocity component (spanwise velocity) was not 

corrected as it was too small (around zero) so it was very sensitive to small machine learning 

errors. 



www.manaraa.com

 

120 

 

 Data convergence study was performed (this means that adding more training data either 

improves the predictive capability of the model or at least does not affect it). 

Machine Learning algorithms (Artificial Neural Network (ANN) and Random Forest 

Regression (RFR)) were investigated as regression algorithms. RFR performs better than ANN in 

terms of accuracy and computational expense. For the investigated cases, RFR performed even 

better than a three-layer ANN. The average RFR error for the testing data is around 3 times smaller 

than the standard deviation of the local grid induced error while the maximum RFR error is 3 to 4 

times the standard deviation of the grid induced error. 
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7. CONCLUSIONS 

The thermal-hydraulics’ phenomena modeling approaches used in nuclear industry include 

system codes with emerging trend of utilizing CFD-scale analysis. CFD codes have the advantage 

of capturing the three-dimensional flow behavior but they are computationally expensive. To 

mitigate the computational expense, a Coarse-grid CFD (CG-CFD) approach is proposed in this 

work. A general framework for simulating containment thermal hydraulics with CG-CFD is 

presented. CG-CFD framework involves relying on coarse-grid simulations which introduce 

discretization error (grid-induced error). Next, the grid-induced error is captured with the data-

driven surrogate model developed by Machine Learning. This data-driven model predicts the grid-

induced error as a function of the inaccurate flow features computed by coarse-grid simulations. 

Regression among the grid-induced error and the coarse-grid flow features were performed with 

machine learning algorithms (one layer, multi-layer neural network, and random forest regression). 

This approach was applied successfully with a three-dimensional turbulent flow inside a 

lid-driven cavity. The surrogate model which predicts the grid-induced error was trained with 

different sets of training flows and applied on testing flows (new data) which have different 

Reynolds number, aspect ratio, and grid size. The proposed method succeeded in predicting the 

three-dimensional spatial distribution of the velocity. This method optimizes using the available 

high-fidelity data and has a good predictive capability. 

The contributions of this work can be summarized as follows: 

7.1. Contributions 

1. A General framework to utilize coarse grids for simulating containment thermal 

hydraulics 

Typically, the available experimental data or high-fidelity simulation may help to 

understand some phenomena (separate effects) but it would be challenging to simulate the 
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combined effects in a nuclear accident scenario on the containment scale.  Hence, A conceptual 

framework is proposed to benefit from fine-grid simulation results, to correct CG-CFD results for 

each potential CTH single phenomenon, while the multiple phenomena scenario is simulated with 

coarse grids.  Part of this framework is already actualized in this work (correcting the coarse-grid 

simulation results). 

2. A new method (CG-CFD) is developed to predict the grid-induced error using 

machine learning 

 Getting a grid-independent solution is not possible in many practical scenarios. Therefore, 

a new method is developed to correct the local grid-induced error distribution of the flow of 

interest. The method has the following features: 1- Local flow features are computed for each cell 

in the computational domain. 2- Flow variable value in each cell in the domain is assumed to be 

of interest. 3. Maximum benefit of the available data is achieved given more than 30 local flow 

features computed for each cell in the computational domain for a variety of cases studies. 

The proposed method predicts the discretization error (grid-induced error) given the results 

computed by the grids which are away from the asymptotic convergence range. Typical 

discretization error estimators (like Richardson extrapolation) demands to have numerical results 

that lie in the asymptotic range. Reaching the asymptotic range is computationally expensive for 

three-dimensional Navier–Stokes equations.  

3. Exploration of the proposed method capability to extrapolate beyond the training 

limits. 

Using the proposed method, a surrogate model is trained using a smaller geometry (e.g. a 

cubic cavity) to predict the flow variable distribution for a bigger geometry (higher aspect ratio). 

It can also predict the flow variable distribution for a different Reynolds number (different 

viscosity corresponding to a different fluid).  
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4. Evaluation of the capability of machine learning algorithms to predict the grid-

induced error. 

Shallow (one-layer) neural network, deep (multi-layer) network and random forest 

regression algorithms were evaluated as regression algorithms. For the investigated cases, random 

forest performed better in terms of accuracy and computational expense. 

7.2. Future Work 

The CG-CFD approach presented in this work with grid-induced error, predicted by the 

data-driven surrogate model, is still far from practical application in the field of CTH. To cover 

the gap between the presented approach and CTH applications, future work is needed in three 

directions: (1) Completeness of the CG-CFD CTH framework (depicted in Figure 1), (2)  Studying 

cases which are more relevant to CTH phenomena, (3) Assessing the confidence in the surrogate 

model prediction for different cases. 

1. Completeness of CG-CFD CTH framework 

CG-CFD use in CTH as depicted in Figure 1 includes 8 steps. The third step (that was 

highlighted in yellow) was studied in this work. The other steps are still challenging as following: 

• Coarse-grid simulation of the containment scenario (the fourth step in Figure 1): The coarse 

grid can be a relative term because a grid that is coarse for one of the CTH phenomena may 

not be as coarse for another phenomenon. Additionally, because of the interplay between 

different phenomena, there is no guarantee if the grid-induced error model based on a single 

phenomenon will behave in the same way if the phenomenon is a part of a complicated 

scenario. 

• Pattern recognition (in Figure 1) is needed for every single phenomenon given the coarse-

grid flow variable profile. There is still an open question: to what extent is it possible to 
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coarsen the grid and get results which still identify the physics/phenomena although the 

results are inaccurate?   

2. Studying cases which are more relevant to CTH phenomena 

CTH phenomena typically involve the following physics: 1- turbulent flow, 2- 

multidimensional behavior, 3- non- isothermal (temperature dependent) flows, 4- multi-phase 

flow, 5- multiphysics, 6- transient flow. The flow in a lid-driven cavity is turbulent and three-

dimensional flow but it still lacks the other properties. 

To deal with temperature dependent flows, additional features (e.g. temperature gradients, 

Rayleigh number, etc.) will be required. 

For the transient flows, time derivatives’ terms may be involved as flow features. 

Alternatively, we may hypothesize that the local time scale is much shorter than the characteristic 

time scale of the transient. Hence, the current CG-CFD method that was tested on a quasi-steady 

state flow may be applied to transient problems.  

3. Assessing the confidence in the surrogate model prediction 

In this work, 18 scenarios were studied which represent different possibilities about which 

flows are available for training a surrogate model and which flow is targeted by the surrogate 

model. It may be expected that the capability of the surrogate model is related to the closeness 

between the training flows and the testing flows. There is no metric for this closeness. This metric 

should serve as a priori assessment for the prediction confidence. 

Another challenge is the error boundedness: surrogate models may give good predictions, 

but the predictions are never perfect. Estimating the error bounds when using a specific statistical 

model is essential to identify the safety margin related to the variable of interest. 
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